
SafeNet USB HSM 6.2.2
SDK Reference Guide

Document Information

Product Version 6.2.2

Document Part Number 007-011302-014

Release Date 01 December 2016

Revision History

Revision Date Reason

A 01December 2016 Initial release.

B 03 February 2017 Reinstate "Technology Preview"

Trademarks, Copyrights, and Third-Party Software
Copyright 2001-2017Gemalto. All rights reserved. Gemalto and the Gemalto logo are trademarks and servicemarks of
Gemalto and/or its subsidiaries and are registered in certain countries. All other trademarks and servicemarks, whether
registered or not in specific countries, are the property of their respective owners.

Acknowledgements
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www.openssl.org)

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes
software written by Tim Hudson (tjh@cryptsoft.com).

This product includes software developed by the University of California, Berkeley and its contributors.

This product uses Brian Gladman’s AES implementation.

Refer to the End User License Agreement for more information.

Disclaimer
All information herein is either public information or is the property of and owned solely by Gemalto and/or its
subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual property
protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise, under any
intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

• The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all copies.

• This document shall not be posted on any publicly accessible network computer or broadcast in any media, and no
modification of any part of this document shall bemade.

Use for any other purpose is expressly prohibited andmay result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless otherwise
expressly agreed in writing, Gemalto makes no warranty as to the value or accuracy of information contained herein.

SafeNet USBHSMSDKReferenceGuide
Rellease 6.2.2 007-011302-014 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 2

The document could include technical inaccuracies or typographical errors. Changes are periodically added to the
information herein. Furthermore, Gemalto reserves the right to make any change or improvement in the specifications
data, information, and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein, including all
implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In no event shall
Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or consequential damages or any
damages whatsoever including but not limited to damages resulting from loss of use, data, profits, revenues, or
customers, arising out of or in connection with the use or performance of information contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not incur, and
disclaims, any liability in this respect. Even if each product is compliant with current security standards in force on the
date of their design, security mechanisms' resistance necessarily evolves according to the state of the art in security
and notably under the emergence of new attacks. Under no circumstances, shall Gemalto be held liable for any third
party actions and in particular in case of any successful attack against systems or equipment incorporating Gemalto
products. Gemalto disclaims any liability with respect to security for direct, indirect, incidental or consequential
damages that result from any use of its products. It is further stressed that independent testing and verification by the
person using the product is particularly encouraged, especially in any application in which defective, incorrect or
insecure functioning could result in damage to persons or property, denial of service, or loss of privacy.

Regulatory Compliance
This product complies with the following regulatory regulations. To ensure compliancy, ensure that you install the
products as specified in the installation instructions and use only Gemalto-supplied or approved accessories.

USA, FCC
This device complies with Part 15 of the FCC rules. Operation is subject to the following conditions:

• This devicemay not cause harmful interference.

• This devicemust accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a “Class B”
digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide
reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning
the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following
measures:

• Reorient or relocate the receiving antenna

• Increase the separation between the equipment and receiver

• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected

• Consult the dealer or an experienced radio/TV technician for help

Changes or modifications not expressly approved by Gemalto could void the user’s authority to operate the equipment.

Canada
This class B digital apparatus meets all requirements of the Canadian interference- causing equipment regulations.

SafeNet USBHSMSDKReferenceGuide
Rellease 6.2.2 007-011302-014 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 3

Europe
This product is in conformity with the protection requirements of EC Council Directive 2004/108/EC. Conformity is
declared to the following applicable standards for electro-magnetic compatibility immunity and susceptibility; CISPR22
and IEC801. This product satisfies the CLASS B limits of EN 55022.

SafeNet USBHSMSDKReferenceGuide
Rellease 6.2.2 007-011302-014 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 4

CONTENTS

PREFACE About the SDK Reference Guide 14
Customer Release Notes 14
Gemalto Rebranding 14
Audience 15
Document Conventions 15

Notes 15
Cautions 16
Warnings 16
Command Syntax and Typeface Conventions 16

Support Contacts 17

1 SafeNet SDK Overview 18
Supported Cryptographic Algorithms 18

Application Programming Interface 18
Application Programming Interface (API) Overview 20

Sample Application 21
A Note About RSA Key Attributes ‘p’ and ‘q’ 21

What Does 'Supported' Mean? 22
Why Is an Integration Not Listed Here Or On theWebsite? 22

Frequently AskedQuestions 22
How can we use a SafeNet HSM with a Key Manager? 23
We need to encrypt PANs onMS SQLServer 2008 (Extensible Key Management). We have a problem with
the encrypted PAN, as the length is greater than the original PAN (16 digits). 23
"Makecert" fails when using SafeNet Network HSMwithMS Authenticode, because theMD5 algorithm is
not available when the HSM is in FIPS mode. Error: CryptHashPublicKeyInfo failed => 0x80090005 (-
2146893819) Failed, and FINIDigest_Init ***CKR_MECHANISM_INVALID***(296ms) {} 23
We are developing our application(s) in C#, and wewant to integrate with SafeNet HSMs 24
We intend to use PKCS#11 data objects - is this supported in the API for your HSMs? 24
In our application, both for PKCS#11 and for the JCA/JCE SafeNet Provider, we need to use CKM_
SHAxxx_RSA_PKCS mechanism for Signing. Does Hashing occur at the Client or in the HSM? 24
Wewere using another vendor's HSM - or are evaluating HSM products - to host an online sub- or issuing CA
with MSCA. With the other vendor wemust check "Allow administrator interaction when the private key is
accessed by the CA" in the "Configure Cryptography" setup dialog. SafeNet HSMs seem to work regardless
of whether that selection is checked or not. 24

2 PKCS#11 Support 26
PKCS#11 Compliance 26

Supported PKCS#11 Services 26
Additional Functions 29

Using the PKCS#11 Sample 30
The SfntLibPath Environment Variable 30
What p11Sample Does 30

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 5

3 Extensions to PKCS#11 32
SafeNet Extensions to PKCS#11 32

Other APIs 32
Summary of New Functions 33
Cryptoki Version Supported 34

HSMConfiguration Settings 34
SafeNet Network HSM-Specific Commands 34

Commands Not Available Through Libraries 34
Configuration Settings 35

Secure PIN Port Authentication 35
Shared Login State and Application IDs 36

Why Share Session State Between Applications? 36
Login State Sharing Overview 37
Login State Sharing Functions 37
Application ID Examples 38

High Availability Indirect Login Functions 39
Initialization functions 39
Recovery Functions 40
Login Key Attributes 42
Control of HA Functionality 42

MofN Secret Sharing 42
Key Export Features 42

RSA Key Component Wrapping 43
Derivation of Symmetric Keys with 3DES_ECB 45
PKCS # 11 Extension HA Status Call 45

Function Definition 45
Pseudorandom Function KDFMechanisms 46
Derive Template 46

Examples 47
Unwrap Template 48

Use Case Example 48
Examples 49

4 Supported Mechanisms 52
Mechanism Remap for FIPS Compliance 52

Mechanism RemapConfiguration Settings 52
CKM_2DES_DERIVE 56
CKM_AES_CBC 57
CKM_AES_CBC_ENCRYPT_DATA 58
CKM_AES_CBC_PAD 59
CKM_AES_CBC_PAD_EXTRACT 60
CKM_AES_CBC_PAD_EXTRACT_DOMAIN_CTRL 61
CKM_AES_CBC_PAD_EXTRACT_FLATTENED 62
CKM_AES_CBC_PAD_EXTRACT_PUBLIC 63
CKM_AES_CBC_PAD_EXTRACT_PUBLIC_FLATTENED 64
CKM_AES_CBC_PAD_INSERT 65
CKM_AES_CBC_PAD_INSERT_DOMAIN_CTRL 66
CKM_AES_CBC_PAD_INSERT_FLATTENED 67
CKM_AES_CBC_PAD_INSERT_PUBLIC 68

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 6

CKM_AES_CBC_PAD_INSERT_PUBLIC_FLATTENED 69
CKM_AES_CBC_PAD_IPSEC 70
CKM_AES_CFB8 71
CKM_AES_CFB128 72
CKM_AES_CMAC 73
CKM_AES_CTR 74
CKM_AES_ECB 75
CKM_AES_ECB_ENCRYPT_DATA 76
CKM_AES_GCM 77
CKM_AES_GMAC 78
CKM_AES_KEY_GEN 80
CKM_AES_KW 81
CKM_AES_MAC 82
CKM_AES_OFB 83
CKM_ARIA_CBC 84
CKM_ARIA_CBC_ENCRYPT_DATA 85
CKM_ARIA_CBC_PAD 86
CKM_ARIA_CFB8 87
CKM_ARIA_CFB128 88
CKM_ARIA_CMAC 89
CKM_ARIA_CTR 90
CKM_ARIA_ECB 91
CKM_ARIA_ECB_ENCRYPT_DATA 92
CKM_ARIA_GCM 93
CKM_ARIA_KEY_GEN 94
CKM_ARIA_L_CBC 95
CKM_ARIA_L_CBC_PAD 96
CKM_ARIA_L_ECB 97
CKM_ARIA_L_MAC 98
CKM_ARIA_MAC 99
CKM_ARIA_OFB 100
CKM_CAST3_CBC 101
CKM_CAST3_CBC_PAD 102
CKM_CAST3_ECB 103
CKM_CAST3_KEY_GEN 104
CKM_CAST3_MAC 105
CKM_CAST5_CBC 106
CKM_CAST5_CBC_PAD 107
CKM_CAST5_ECB 108
CKM_CAST5_KEY_GEN 109
CKM_CAST5_MAC 110
CKM_CONCATENATE_BASE_AND_DATA 111
CKM_CONCATENATE_BASE_AND_KEY 112
CKM_CONCATENATE_DATA_AND_BASE 113
CKM_CONCATENATE_KEY_AND_BASE 114
CKM_DES_CBC 115
CKM_DES_CBC_ENCRYPT_DATA 116
CKM_DES_CBC_PAD 117
CKM_DES_ECB 118

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 7

CKM_DES_ECB_ENCRYPT_DATA 119
CKM_DES_KEY_GEN 120
CKM_DES_MAC 121
CKM_DES2_DUKPT_DATA 122
CKM_DES2_DUKPT_DATA_RESP 124
CKM_DES2_DUKPT_MAC 126
CKM_DES2_DUKPT_MAC_RESP 128
CKM_DES2_DUKPT_PIN 130
CKM_DES2_KEY_GEN 132
CKM_DES3_CBC 133
CKM_DES3_CBC_ENCRYPT_DATA 134
CKM_DES3_CBC_PAD 135
CKM_DES3_CBC_PAD_IPSEC 136
CKM_DES3_CFB8 137
CKM_DES3_CFB64 138
CKM_DES3_CMAC 139
CKM_DES3_CTR 140
CKM_DES3_ECB 141
CKM_DES3_ECB_ENCRYPT_DATA 142
CKM_DES3_GCM 143
CKM_DES3_KEY_GEN 144
CKM_DES3_MAC 145
CKM_DES3_OFB 146
CKM_DES3_X919_MAC 147
CKM_DH_PKCS_DERIVE 149
CKM_DH_PKCS_KEY_PAIR_GEN 150
CKM_DH_PKCS_PARAMETER_GEN 151
CKM_DSA 152
CKM_DSA_KEY_PAIR_GEN 153
CKM_DSA_PARAMETER_GEN 154
CKM_EC_KEY_PAIR_GEN 155
CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS 156
CKM_ECDH1_COFACTOR_DERIVE 157
CKM_ECDH1_DERIVE 158
CKM_ECDSA 159
CKM_ECIES 160
CKM_ECMQV_DERIVE 161
CKM_EXTRACT_KEY_FROM_KEY 162
CKM_GENERIC_SECRET_KEY_GEN 163
CKM_HAS160 164
CKM_HAS160_KCDSA 165
CKM_HAS160_KCDSA_NO_PAD 166
CKM_HMAC_HAS160 167
CKM_HMAC_MD5 168
CKM_HMAC_MD5_80 169
CKM_HMAC_RIPEMD160 170
CKM_HMAC_SHA1 171
CKM_HMAC_SHA1_80 172
CKM_HMAC_SHA224 173

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 8

CKM_HMAC_SHA256 174
CKM_HMAC_SHA384 175
CKM_HMAC_SHA512 176
CKM_HMAC_SM3 177
CKM_KCDSA_KEY_PAIR_GEN 178
CKM_KCDSA_PARAMETER_GEN 179
CKM_KEY_WRAP_SET_OAEP 180
CKM_LOOP_BACK 181
CKM_LZS 182
CKM_MD2 183
CKM_MD2_DES_CBC 184
CKM_MD2_KEY_DERIVATION 185
CKM_MD5 186
CKM_MD5_CAST_CBC 187
CKM_MD5_CAST3_CBC 188
CKM_MD5_DES_CBC 189
CKM_MD5_KEY_DERIVATION 190
CKM_MD5_RSA_PKCS 191
CKM_NIST_PRF_KDF 192
CKM_PKCS5_PBKD2 194
CKM_PRF_KDF 195
CKM_RC2_CBC 197
CKM_RC2_CBC_PAD 198
CKM_RC2_ECB 199
CKM_RC2_KEY_GEN 200
CKM_RC2_MAC 201
CKM_RC4 202
CKM_RC4_KEY_GEN 203
CKM_RC5_CBC 204
CKM_RC5_CBC_PAD 205
CKM_RC5_ECB 206
CKM_RC5_KEY_GEN 207
CKM_RC5_MAC 208
CKM_RIPEMD160 209
CKM_RSA_FIPS_186_3_AUX_PRIME_KEY_PAIR_GEN 210
CKM_RSA_FIPS_186_3_PRIME_KEY_PAIR_GEN 211
CKM_RSA_PKCS 212
CKM_RSA_PKCS_KEY_PAIR_GEN 213
CKM_RSA_PKCS_OAEP 214
CKM_RSA_PKCS_PSS 215
CKM_RSA_X_509 216
CKM_RSA_X9_31 217
CKM_RSA_X9_31_KEY_PAIR_GEN 218
CKM_RSA_X9_31_NON_FIPS 219
CKM_SEED_CBC 220
CKM_SEED_CBC_PAD 221
CKM_SEED_CMAC 222
CKM_SEED_CTR 223
CKM_SEED_ECB 224

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 9

CKM_SEED_KEY_GEN 225
CKM_SEED_MAC 226
CKM_SHA_1 227
CKM_SHA1_CAST5_CBC 228
CKM_SHA1_DES2_CBC 229
CKM_SHA1_DES2_CBC_OLD 230
CKM_SHA1_DES3_CBC 231
CKM_SHA1_DES3_CBC_OLD 232
CKM_SHA1_DSA 233
CKM_SHA1_ECDSA 234
CKM_SHA1_KCDSA 235
CKM_SHA1_KCDSA_NO_PAD 236
CKM_SHA1_KEY_DERIVATION 237
CKM_SHA1_RC2_40_CBC 238
CKM_SHA1_RC2_128_CBC 239
CKM_SHA1_RC4_40 240
CKM_SHA1_RC4_128 241
CKM_SHA1_RSA_PKCS 242
CKM_SHA1_RSA_PKCS_PSS 243
CKM_SHA1_RSA_X9_31 244
CKM_SHA1_RSA_X9_31_NON_FIPS 245
CKM_SHA224 246
CKM_SHA224_DSA 247
CKM_SHA224_ECDSA 248
CKM_SHA224_KCDSA 249
CKM_SHA224_KCDSA_NO_PAD 250
CKM_SHA224_KEY_DERIVATION 251
CKM_SHA224_RSA_PKCS 252
CKM_SHA224_RSA_PKCS_PSS 253
CKM_SHA224_RSA_X9_31 254
CKM_SHA224_RSA_X9_31_NON_FIPS 255
CKM_SHA256 256
CKM_SHA256_DSA 257
CKM_SHA256_ECDSA 258
CKM_SHA256_ECDSA_GBCS 259
CKM_SHA256_KCDSA 260
CKM_SHA256_KCDSA_NO_PAD 261
CKM_SHA256_KEY_DERIVATION 262
CKM_SHA256_RSA_PKCS 263
CKM_SHA256_RSA_PKCS_PSS 264
CKM_SHA256_RSA_X9_31 265
CKM_SHA256_RSA_X9_31_NON_FIPS 266
CKM_SHA384 267
CKM_SHA384_ECDSA 268
CKM_SHA384_KCDSA 269
CKM_SHA384_KCDSA_NO_PAD 270
CKM_SHA384_KEY_DERIVATION 271
CKM_SHA384_RSA_PKCS 272
CKM_SHA384_RSA_PKCS_PSS 273

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 10

CKM_SHA384_RSA_X9_31 274
CKM_SHA384_RSA_X9_31_NON_FIPS 275
CKM_SHA512 276
CKM_SHA512_ECDSA 277
CKM_SHA512_KCDSA 278
CKM_SHA512_KCDSA_NO_PAD 279
CKM_SHA512_KEY_DERIVATION 280
CKM_SHA512_RSA_PKCS 281
CKM_SHA512_RSA_PKCS_PSS 282
CKM_SHA512_RSA_X9_31 283
CKM_SHA512_RSA_X9_31_NON_FIPS 284
CKM_SM3 285
CKM_SM3_KEY_DERIVATION 286
CKM_SSL3_KEY_AND_MAC_DERIVE 287
CKM_SSL3_MASTER_KEY_DERIVE 288
CKM_SSL3_MD5_MAC 289
CKM_SSL3_PRE_MASTER_KEY_GEN 290
CKM_SSL3_SHA1_MAC 291
CKM_UNKNOWN 292
CKM_X9_42_DH_DERIVE 293
CKM_X9_42_DH_HYBRID_DERIVE 294
CKM_X9_42_DH_KEY_PAIR_GEN 295
CKM_X9_42_DH_PARAMETER_GEN 296

5 Using the SafeNet SDK 297
Libraries and Applications 297

SafeNet SDK Applications General Information 297
Compiler Tools 298
The Applications 299

Application IDs 299
Shared Login State and Application IDs 299

NamedCurves and User-Defined Parameters 302
Curve Validation Limitations 303
Storing Domain Parameters 303
Using Domain Parameters 303
User Friendly Encoder 303
Application Interfaces 304
Sample Domain Parameter Files 306

Curve Names By Organization 310
Capability and Policy Configuration Control Using the SafeNet API 311

HSMCapabilities and Policies 311
HSM Partition Capabilities and Policies 311
Policy Refinement 312
Policy Types 312
Querying andModifying HSMConfiguration 312

Connection Timeout 315
Linux and Unix Connection Timeout 315
Windows Connection Timeout 315

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 11

6 Design Considerations 316
PED-Authenticated HSMs 316

About CKDemowith SafeNet PED 316
Interchangeability 317
Startup 317
Cloning of Tokens 318

High Availability (HA) Implementations 318
Detecting the Failure of an HA Member 319

Migrating Keys From Software to a SafeNet HSM 320
Other Formats of Key Material 322
Sample Program 322

Audit Logging 344
Audit Log Records 344
Audit LogMessage Format 345
Log External 346

About Scalable Key Storage 347
Scalable Key Storage (formerly SIM) APIs 348

SIM II (Enhancements to SIM) 348
Example Operations Using CKDemo 350

Using Scalable Key Storage in aMulti-HSM Environment 351

7 Java Interfaces 353
SafeNet JSP Overview and Installation 353

JDK Compatibility 353
Installation 354
Post-Installation Tasks 354

SafeNet JSP Configuration 356
Installation 356
Java -- Encryption policy files for unlimited strength ciphers 356
SafeNet Java Security Provider 356
Keytool 358
Cleaning Up 358
PKCS#11/JCA Interaction 358

The JCPROV PKCS#11 JavaWrapper 359
JCPROV Overview 359
Installing JCPROV 360
JCPROV Sample Programs 361
JCPROV Sample Classes 362
JCPROV API Documentation 365

Java or JSP Errors 365
Re-Establishing a Connection Between Your Java Application and SafeNet Network HSM 366
Recovering From the Loss of All HA Members 366

When to Use the reintializeMethod 367
Why theMethodMust Be Used 367
What Happens on the HSM 367

Elliptic Curve Problem in SUN JDK 1.6 and earlier 368
Using Java Keytool with SafeNet HSM 370

Limitations 370
Keytool Usage and Examples 370

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 12

Import CA certificate 371
Generate private key 371
Create the CSR 372
Import client certificate 373
How to build a certificate with chain ... 374
Additional minor notes 374

JSP Dynamic Registration Sample 376
Sample Code 376

8 Microsoft Interfaces 377
The SafeNet CSP Registration Tool and Utilities 377

The KeymapUtility 377
Thems2Luna Utility 377
The CSP Registration Tool 377

KSP for CNG 382
Installing KSP 382
Configuring KSP 382
If It Doesn't Work? 387
Algorithms Supported 387
Enabling Key Counting 388

SafeNet CSP Calls and Functions 388
Programming for SafeNet HSM with SafeNet CSP 389
Algorithms 390

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 13

PREFACE
About the SDK Reference Guide

This document describes how to use the SafeNet SDK to create applications that interact with SafeNet HSMs. It
contains the following chapters:

• "SafeNet SDK Overview" on page 18

• "PKCS#11 Support" on page 26

• "Extensions to PKCS#11" on page 32

• "SupportedMechanisms" on page 52

• "Using the SafeNet SDK" on page 297

• "Design Considerations" on page 316

• "Java Interfaces" on page 353

• "Microsoft Interfaces" on page 377

This preface also includes the following information about this document:

• "Customer Release Notes" below

• "Gemalto Rebranding" below

• "Audience" on the next page

• "Document Conventions" on the next page

• "Support Contacts" on page 17

For information regarding the document status and revision history, see "Document Information" on page 2.

Customer Release Notes
The customer release notes (CRN) provide important information about this release that is not included in the customer
documentation. It is strongly recommended that you read the CRN to fully understand the capabilities, limitations, and
known issues for this release. You can view or download the latest version of the CRN for this release at the following
location:

• http://www.securedbysafenet.com/releasenotes/luna/crn_luna_hsm_6-2-2.pdf

Gemalto Rebranding
In early 2015, Gemalto completed its acquisition of SafeNet, Inc. As part of the process of rationalizing the product
portfolios between the two organizations, the Luna name has been removed from the SafeNet HSM product line, with
the SafeNet name being retained. As a result, the product names for SafeNet HSMs have changed as follows:

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 14

PREFACE About the SDK ReferenceGuide

Old product name New product name

Luna SA HSM SafeNet Network HSM

Luna PCI-E HSM SafeNet PCIe HSM

LunaG5HSM SafeNet USB HSM

Luna PED SafeNet PED

Luna Client SafeNet HSM Client

Luna Dock SafeNet Dock

Luna Backup HSM SafeNet Backup HSM

Luna CSP SafeNet CSP

Luna JSP SafeNet JSP

Luna KSP SafeNet KSP

Note: These branding changes apply to the documentation only. The SafeNet HSM software
and utilities continue to use the old names.

Audience
This document is intended for personnel responsible for maintaining your organization's security infrastructure. This
includes SafeNet HSM users and security officers, key manager administrators, and network administrators.

All products manufactured and distributed by Gemalto are designed to be installed, operated, andmaintained by
personnel who have the knowledge, training, and qualifications required to safely perform the tasks assigned to them.
The information, processes, and procedures contained in this document are intended for use by trained and qualified
personnel only.

It is assumed that the users of this document are proficient with security concepts.

Document Conventions
This document uses standard conventions for describing the user interface and for alerting you to important information.

Notes
Notes are used to alert you to important or helpful information. They use the following format:

Note: Take note. Contains important or helpful information.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 15

PREFACE About the SDK ReferenceGuide

Cautions
Cautions are used to alert you to important information that may help prevent unexpected results or data loss. They use
the following format:

CAUTION: Exercise caution. Contains important information that may help prevent
unexpected results or data loss.

Warnings
Warnings are used to alert you to the potential for catastrophic data loss or personal injury. They use the following
format:

WARNING! Be extremely careful and obey all safety and security measures. In this
situation you might do something that could result in catastrophic data loss or
personal injury.

Command Syntax and Typeface Conventions
Format Convention

bold The bold attribute is used to indicate the following:
• Command-line commands and options (Type dir /p.)
• Button names (Click Save As.)
• Check box and radio button names (Select the Print Duplex check box.)
• Dialog box titles (On the Protect Document dialog box, click Yes.)
• Field names (User Name: Enter the name of the user.)
• Menu names (On the File menu, click Save.) (Click Menu > Go To > Folders.)
• User input (In the Date box, type April 1.)

italics In type, the italic attribute is used for emphasis or to indicate a related document. (See the
Installation Guide for more information.)

<variable> In command descriptions, angle brackets represent variables. Youmust substitute a value for
command line arguments that are enclosed in angle brackets.

[optional]
[<optional>]

Represent optional keywords or <variables> in a command line description. Optionally enter the
keyword or <variable> that is enclosed in square brackets, if it is necessary or desirable to
complete the task.

{a|b|c}
{<a>||<c>}

Represent required alternate keywords or <variables> in a command line description. Youmust
choose one command line argument enclosed within the braces. Choices are separated by vertical
(OR) bars.

[a|b|c]
[<a>||<c>]

Represent optional alternate keywords or variables in a command line description. Choose one
command line argument enclosed within the braces, if desired. Choices are separated by vertical
(OR) bars.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 16

PREFACE About the SDK ReferenceGuide

Support Contacts
Contact method Contact

Address Gemalto
4690Millennium Drive
Belcamp, Maryland 21017
USA

Phone Global +1 410-931-7520

Australia 1800.020.183

China (86) 10 8851 9191

France 0825 341000

Germany 01803 7246269

India 000.800.100.4290

Netherlands 0800.022.2996

New Zealand 0800.440.359

Portugal 800.1302.029

Singapore 800.863.499

Spain 900.938.717

Sweden 020.791.028

Switzerland 0800.564.849

United Kingdom 0800.056.3158

United States (800) 545-6608

Web www.safenet-inc.com

Support and Downloads www.safenet-inc.com/support
Provides access to the Gemalto Knowledge Base and quick downloads for
various products.

Technical Support Customer
Portal

https://serviceportal.safenet-inc.com
Existing customers with a Technical Support Customer Portal account can log in
tomanage incidents, get the latest software upgrades, and access the Gemalto
Knowledge Base.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 17

http://www.safenet-inc.com/
http://www.safenet-inc.com/support
https://serviceportal.safenet-inc.com/

1
SafeNet SDK Overview

This chapter provides an overview of the SafeNet Software Development Kit (SDK), a development platform you can
use to integrate a SafeNet HSM into your application or system. It contains the following topics:

• "Supported Cryptographic Algorithms" below

• "Application Programming Interface (API) Overview" on page 20

• "What Does 'Supported' Mean?" on page 22

• "Frequently AskedQuestions" on page 22

Supported Cryptographic Algorithms
The K6Cryptographic engine supports cryptographic algorithms that include:

• RSA

• DSA

• Diffie-Hellman

• DES and triple DES

• MD2 andMD5

• SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

• RC2, RC4 and RC5

• AES

• PBE

• ECC

• ECIES

• ARIA, SEED

Application Programming Interface
Themajor API provided with SafeNet Product Software Development Kit conforms to RSA Laboratories' Public-Key
Cryptography Standards #11 (PKCS #11) v2.20. A set of API services (called PKCS #11 Extensions) designed by
SafeNet, augments the services provided by PKCS#11. The API is a library – a DLL inWindows, a shared object in
Solaris, AIX and Linux, a shared library in HP-UX – called Chrystoki. Applications wanting to use token services must
connect with Chrystoki.

In addition, support is provided for Microsoft’s cryptographic APIs (CAPI/CNG) andOracle’s Java Security API.

The extensions to each API enable optimum use of SafeNet hardware for commonly used calls and functions, where
the unaugmented API would tend to use software, or to make generic, non-optimized use of available HSMs.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 18

1 SafeNet SDK Overview

Platform Key name Libraries

Windows LibNT X:\Program Files\SafeNet\LunaClient\cryptoki.dll

X:\Program Files\SafeNet\LunaClient\cklog201.dll

X:\Program Files\SafeNet\LunaClient\shim.dll

X:\Program Files\SafeNet\LunaClient\LunaCSP\LunaCSP.dll

C:\WINDOWS\system32\SafeNetKSP.dll

Solaris (32-bit) LibUNIX /opt/safenet/lunaclient/lib/libCryptoki2.so

/opt/safenet/lunaclient/lib/libcklog2.so

/opt/safenet/lunaclient/lib/libshim.so

Solaris (64-bit) LibUNIX64 /opt/safenet/lunaclient/lib/libCryptoki2_64.so

/opt/safenet/lunaclient/lib/libcklog2.so

/opt/safenet/lunaclient/lib/libshim_64.so

Linux (64-bit) LibUNIX /usr/safenet/lunaclient/lib/libCryptoki2.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim.so

Linux (64-bit) LibUNIX64 /usr/safenet/lunaclient/lib/libCryptoki2_64.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim_64.so

HP-UX (32-bit and 64-bit) LibHPUX /opt/safenet/lunaclient/lib/libCryptoki2.sl

/opt/safenet/lunaclient/lib/libCryptoki2_64.sl

/opt/safenet/lunaclient//lib/libcklog2.sl

/opt/safenet/lunaclient/lib/libshim.sl

AIX (32-bit and 64-bit) LibAIX /usr/safenet/lunaclient/lib/libCryptoki2.so

/usr/safenet/lunaclient/lib/libCryptoki2_64.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim.so

Table 1: SafeNet libraries by platform

Included with SafeNet Product Software Development Kit is a sample application – and the source code – to accelerate
integration of SafeNet’s cryptographic engine into your system.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 19

1 SafeNet SDK Overview

Note: To reduce development or adaptation time, youmay re-distribute the salogin program to
customers who use SafeNet Network HSM, in accordance with the terms of the End User
License Agreement. However, youmay not re-distribute the SafeNet Software Development
Kit itself.

Application Programming Interface (API) Overview
Themajor API provided with SafeNet Product Software Development Kit conforms to RSA Laboratories' Public-Key
Cryptography Standards #11 (PKCS #11) v2.20, as described in "PKCS#11 Support" on page 26. A set of API services
(called PKCS #11 Extensions) designed by SafeNet, augments the services provided by PKCS#11, as described in
"Extensions to PKCS#11" on page 32. The extensions to each API enable optimum use of SafeNet SafeNet hardware
for commonly used calls and functions, where the unaugmented API would tend to use software, or to make generic,
non-optimized use of available HSMs.

In addition, support is provided for Microsoft’s cryptographic APIs (CAPI/CNG) (see "Microsoft Interfaces" on page 377
andOracle’s Java Security API (see "Java Interfaces" on page 353).

The API is a library – a DLL inWindows, a shared object in Solaris, AIX and Linux, a shared library in HP-UX – called
Chrystoki. Applications wanting to use token services must connect with Chrystoki.

Platform Key name Libraries

Windows LibNT X:\Program Files\SafeNet\LunaClient\cryptoki.dll

X:\Program Files\SafeNet\LunaClient\cklog201.dll

X:\Program Files\SafeNet\LunaClient\shim.dll

X:\Program Files\SafeNet\LunaClient\LunaCSP\LunaCSP.dll

C:\WINDOWS\system32\SafeNetKSP.dll

Solaris (32-bit) LibUNIX /opt/safenet/lunaclient/lib/libCryptoki2.so

/opt/safenet/lunaclient/lib/libcklog2.so

/opt/safenet/lunaclient/lib/libshim.so

Solaris (64-bit) LibUNIX64 /opt/safenet/lunaclient/lib/libCryptoki2_64.so

/opt/safenet/lunaclient/lib/libcklog2.so

/opt/safenet/lunaclient/lib/libshim_64.so

Linux (64-bit) LibUNIX /usr/safenet/lunaclient/lib/libCryptoki2.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim.so

Table 1: SafeNet libraries by platform

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 20

1 SafeNet SDK Overview

Platform Key name Libraries

Linux (64-bit) LibUNIX64 /usr/safenet/lunaclient/lib/libCryptoki2_64.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim_64.so

HP-UX (32-bit and 64-bit) LibHPUX /opt/safenet/lunaclient/lib/libCryptoki2.sl

/opt/safenet/lunaclient/lib/libCryptoki2_64.sl

/opt/safenet/lunaclient//lib/libcklog2.sl

/opt/safenet/lunaclient/lib/libshim.sl

AIX (32-bit and 64-bit) LibAIX /usr/safenet/lunaclient/lib/libCryptoki2.so

/usr/safenet/lunaclient/lib/libCryptoki2_64.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim.so

Sample Application
Included with SafeNet Product Software Development Kit is a sample application – and the source code – to accelerate
integration of SafeNet’s cryptographic engine into your system.

Note: To reduce development or adaptation time, youmay re-distribute the salogin program to
customers who use SafeNet Network HSM, in accordance with the terms of the End User
License Agreement. However, youmay not re-distribute the SafeNet Software Development
Kit itself.

A Note About RSA Key Attributes ‘p’ and ‘q’
WhenRSA keys are generated, ‘p’ and ‘q’ components are generated which, theoretically, could be of considerably
different sizes.

Unwrapping
The SafeNet Network HSM allows RSA private keys to be unwrapped onto the HSMwhere the lengths of the ‘p’ and ‘q’
components are unequal. Because the effective strength of an RSA key pair is determined by the length of the shorter
component, choosing ‘p’ and ‘q’ to be of equal length provides themaximum strength from the generated key pair. If
your application is designed to generate key pairs that will be unwrapped onto the HSM, care should be taken in
choosing the lengths of the 'p' and 'q' components such that they differ by nomore than 15%.

Generation
Where you are generating RSA private keys within the HSM, the HSM enforces that ‘p’ and ‘q’ be equal in size, to the
byte level.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 21

1 SafeNet SDK Overview

A Note About the Shim
The Client install includes a shim library to support PKCS#11 integration with various third-party products. You should
have no need for this shim library in your development. If for some reason you determine that you need the shim,
Chrystoki supports it.

What Does 'Supported' Mean?
With the exception of some generic items that (for example) might need to be set inWindows when installing CSP,
KSP, or Java, we do not include a list of integrations in themain product documentation.

Instead, you can check with the www.safenet-inc.com website for third-party applications that have been integrated
and tested with SafeNet HSMs by our Integrations group. That group is constantly testing and updating third-party
integrations and publishing notes and instructions to help you integrate our HSMs with your applications.

As a general rule, if a specific version of an application and a specific version of a SafeNet HSM product arementioned
in an Integration document, then those items will definitely work together. A newer version of the SafeNet HSM or its
attendant software is most likely to work with the indicated application without problem. We take care, for several
generations of a given HSM product, to not break working relationships, though eventually it might happen that very old
versions of third-party software and systems can no longer be supported. One thing that can sometimes happen is that
we update HSM firmware to include newer algorithms, and to exclude older algorithms or key sizes that no longer meet
industry-accepted standards (like NIST, CommonCriteria, etc.).

A newer version of a third-party softwaremight, or might not work with SafeNet HSMs that were tested to work with a
specific earlier version of the same software. This is because some vendors make changes in their products that
require new adaptation or at least new configuration instructions. If this happens to you, SafeNet Customer Support or
Sales Engineering is usually happy to work with you to find a solution - both to support you as one of our customers and
to have a revised/new integration that can be added to our portfolio.

Check the website or contact SafeNet Customer Support for the latest list of third-party applications that are tested and
supported with SafeNet HSMs.

Why Is an Integration Not Listed Here Or On the Website?
In many cases, third-party application vendors see a need to integrate their application with SafeNet products. In those
cases, the third-party company performs the integration and testing, and also provides the support for the integrated
solution to their customers (including you). For integrations not listed by SafeNet, please contact the application vendor
for current information.

Similarly some value-added resellers and custom/third-party integrators or consultants might have performed specific
integrations of SafeNet HSMs for the benefit of their specific customers. If you have purchased services or product
from such a supplier, you will need to contact them for support of such integrations.

Third-party-tested integrations are not listed here or on the SafeNet website library of integration documents because
we have not verified them in our own labs. If you call SafeNet Support regarding use of our product with an application
that we have not integrated, you will be asked to contact the third party that performed the integration.

Frequently Asked Questions
This section provides additional information by answering questions that are frequently asked by our customers.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 22

1 SafeNet SDK Overview

How can we use a SafeNet HSM with a Key Manager?
A SafeNet HSM could be a Certificate Authority (CA) within your organization, and would operate in parallel with a Key
Manager. It is normally the Key Manager that requests service from aCA, and not the other way around. For example,
the Key Manager might generate an RSA key pair for an endpoint to use for authentication. The KM would then go to its
associated CA and request a certificate for the public key.

The other typical use case for a KM looking to a CA for service is for confirming certificate validity, either through CRLs
or OCSP.

In general, the HSM keeps keys safe within its confines, and exports only metadata about the contained objects. The
metadata allows the KM or an integrated application to refer to the keys and objects within the HSM, when invoking
cryptographic operations by the HSM, but not to touch the actual keys or objects themselves.

A CA's private key(s) are extremely valuable and often are used only by a CA application operating on a stand-alone
server or one on a very minimally-connected subnet. Backup is normally done to a small form factor HSM that can then
be locked away in a safe.

We need to encrypt PANs on MS SQL Server 2008 (Extensible Key
Management). We have a problem with the encrypted PAN, as the length is
greater than the original PAN (16 digits).
The issue is a common one and it arises because the CBC padding scheme requires an extra padding block (8 bytes),
with all bytes having the hex value 8, to be appended if the length of the original plaintext is amultiple of the cipher’s
block length. Another format issue often comes up as well since encrypted data does not generally represent well as
decimal digits.

We suggest one of two options:

1. You can set up a shadow table to hold the encrypted PANs. The shadow table schema can then be set up for a
sufficient number of hex numerals to hold the padded data or just make that field a binary blob. This takes some
coding on your part, and the plaintext PANs would be retrieved into a dynamic view, rather than back into the “real”
table, to protect their confidentiality. You should do this only if there is a hard requirement to use SafeNet HSM,
such as certification.

2. Alternatively, you can switch to DataSecure. It has tokenization support and is, in general, designed for DB
security.

"Makecert" fails when using SafeNet Network HSM with MS Authenticode,
because the MD5 algorithm is not available when the HSM is in FIPS mode.
Error: CryptHashPublicKeyInfo failed => 0x80090005 (-2146893819) Failed, and
FINIDigest_Init ***CKR_MECHANISM_INVALID***(296ms) {}
The certificate always has anMD5 hash in it. Configure LunaCSP algorithm registration such that MD5 hashing is
performed in software. For example:

register.exe /algorithms

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 23

1 SafeNet SDK Overview

We are developing our application(s) in C#, and we want to integrate with
SafeNet HSMs
If you want to integrate your C# application with SafeNet HSM 6.x using PKCS#11 calls, rather than usingMicrosoft
CAPI or CNG, then youmight consider using "ncryptoki". At the time this note is being written, we have not created
anything formal, but we have worked with some customers who are successfully using "ncryptoki" for that purpose.

Keep an eye on the Safenet C3 website, or ask your SafeNet technical representatives if anything new has been
added. Or, you could engage SafeNet Professional Services for formal assistance with your project.

We intend to use PKCS#11 data objects - is this supported in the API for your
HSMs?
Yes, it's a basic requirement.
If you have concerns, youmight wish to verify if SafeNet HSMs' (and our API's) handling of data objects are conducive
to the operation of your intended application(s). SafeNet API generally places no restrictions on whether data objects
can be private or not. We understand that, in the past, some competitors' modules might have allowed only public data
objects, if that was the basis of your question.

However, one concern that might arise is Java.
Java offers no support for data objects, and so we do not support them with the LunaProvider. Unexpected results can
occur with SafeNet JCA if a data object is present in a partition. This might be the case if you attempt to use an
application that uses the CSP, and then the JSP accesses the same partition. CSP inherently creates a data object for
its own purposes.

Therefore, keep CSP and JSP clients tied to separate partitions. Generally do not allow JSP to connect to a partition
that contains a data object, regardless of the source - Java (and therefore JSP) doesn't know what to do with it.

If your application scenario really does demand the use of both theMicrosoft Cryptographic Provider and Java against a
common partition, then consider upgrading/updating toMicrosoft CNG and use our KSP, which does not inherently
create a data object, and so would not cause conflict of that sort.

In our application, both for PKCS#11 and for the JCA/JCE SafeNet Provider, we
need to use CKM_SHAxxx_RSA_PKCS mechanism for Signing. Does Hashing
occur at the Client or in the HSM?
CKM_SHAxxx_RSA_PKCS is a PKCS#11mechanism, not a Javamethod.

For PKCS#11 the digest operation is done within the HSM if that mechanism is called.
For Java, digests are done in software.

We were using another vendor's HSM - or are evaluating HSM products - to
host an online sub- or issuing CA with MSCA. With the other vendor we must
check "Allow administrator interaction when the private key is accessed by
the CA" in the "Configure Cryptography" setup dialog. SafeNet HSMs seem to
work regardless of whether that selection is checked or not.
So, for that other vendor's product, you need to enter the additional credentials every time you need to issue a
certificate? That seems a bit restrictive.

"Allow administrator interaction..." actually means "Allow administrator interaction if the underlying KSP requires it".

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 24

1 SafeNet SDK Overview

TheWindows operating system passes aWindows handle that the KSP can use to render any GUI designed by a
vendor (SafeNet or some other vendor).

Somewhere in the process a KSP reports that it can (or cannot) interact with the GUI so the application will (or will not)
request GUI interaction; that is, pass a window handle to the KSP.

So, the <competitor product> KSP expects a window handle - implying hands-on action by an administrator, each time -
whereas SafeNetKsp ignores the handle (if one was provided).

SafeNet's KSP was designed to register partitions ahead of time. SafeNet HSMs can be Activated, which caches the
administrative and enabling credentials, such that only the partition challenge (text string) is needed, which can be
passed by your application without need for GUI interaction. Furthermore, SafeNet Network HSM can "AutoActivate"
partitions, which allows cached ("Activated") partition credentials to be retained through power interruptions as long as
2 hours in duration.

For SafeNet HSMs, as long as the user is registered in the KSP utility, and the partition is activated, the "Allow
administrator interaction..." check box (checked or not checked) does not impose any additional, ongoing,
authentication requirements -- no additional prompts for credentials from theGUI. After initial setup and Activation, the
SafeNet HSM knows what to do, and doesn't need to pester you.

For root CAs, on the other hand, you always have the option of not activating the partition, so PED interaction would
always be required to ensure close supervision for each use of the private key.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 25

2
PKCS#11 Support

This chapter describes the PKCS#11 support provided by the SafeNet SDK. It contains the following topics:

• " PKCS#11 Compliance" below

• "Using the PKCS#11 Sample" on page 30

PKCS#11 Compliance
This section shows the compliance of SafeNet Software Development Kit HSM products to the PKCS#11 standard,
with reference to particular versions of the standard. The text of the standard is not reproduced here.

Supported PKCS#11 Services
The table below identifies which PKCS#11 services this version of SafeNet Software Development Kit supports. The
table following lists other features of PKCS#11 and identifies the compliance of this version of the SafeNet Software
Development Kit to these features.

Category Function Supported SafeNet ver 2.20

General purpose functions C_Initialize Yes

C_Finalize Yes

C_GetInfo Yes

C_GetFunctionList Yes

C_Terminate Yes

Table 1: PKCS#11 function support

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 26

2 PKCS#11 Support

Category Function Supported SafeNet ver 2.20

Slot and tokenmanagement functions C_GetSlotList Yes

C_GetSlotInfo Yes

C_GetTokenInfo Yes

C_WaitForSlotEvent No

C_GetMechanismList Yes

C_GetMechanismInfo Yes

C_InitToken Yes

C_InitPIN Yes

C_SetPIN Yes

Sessionmanagement functions C_OpenSession Yes

C_CloseSession Yes

C_CloseAllSessions Yes

C_GetSessionInfo Yes

C_GetOperationState Yes

C_SetOperationState Yes

C_Login Yes

C_Logout Yes

Object management functions C_CreateObject Yes

C_CopyObject Yes

C_DestroyObject Yes

C_GetObjectSize Yes

C_GetAttributeValue Yes

C_SetAttributeValue Yes

C_FindObjectsInit Yes

C_FindObjects Yes

C_FindObjectsFinal Yes

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 27

2 PKCS#11 Support

Category Function Supported SafeNet ver 2.20

Encryption functions C_EncryptInit Yes

C_Encrypt Yes

C_EncryptUpdate Yes

C_EncryptFinal Yes

Decryption functions C_DecryptInit Yes

C_Decrypt Yes

C_DecryptUpdate Yes

C_DecryptFinal Yes

Message digesting functions C_DigestInit Yes

C_Digest Yes

C_DigestUpdate Yes

C_DigestKey Yes

C_DigestFinal Yes

Signing andMACing functions C_SignInit Yes

C_Sign Yes

C_SignUpdate Yes

C_SignFinal Yes

C_SignRecoverInit No

C_SignRecover No

Functions for verifying signatures andMACs C_VerifyInit Yes

C_Verify Yes

C_VerifyUpdate Yes

C_VerifyFinal Yes

C_VerifyRecoverInit No

C_VerifyRecover No

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 28

2 PKCS#11 Support

Category Function Supported SafeNet ver 2.20

Dual-purpose cryptographic functions C_DigestEncryptUpdate No

C_DecryptDigestUpdate No

C_SignEncryptUpdate No

C_DecryptVerifyUpdate No

Key management functions C_GenerateKey Yes

C_GenerateKeyPair Yes

C_WrapKey Yes

C_UnwrapKey* Yes

C_DeriveKey Yes

Random number generation functions C_SeedRandom Yes

C_GenerateRandom Yes

Parallel function management functions C_GetFunctionStatus No

C_CancelFunction No

Callback function No

*C_UnwrapKey has support for the CKA_Unwrap_Template object. All mechanisms that perform the unwrap function
support an unwrap template. Nested templates are not supported.
The ability to affect key attributes is controlled by partition policy 11: Allow changing key attributes.

Note: UNWRAP TEMPLATE attribute - Your Backup HSM must have firmware version 6.24.0
or newer, as well. If a key is cloned or backed-up to an HSMwith older firmware, the newer
attribute will not be recognized and will be dropped from the object. So when the object is
restored, it will no longer have a CKA_UNWRAP_TEMPLATE attribute.

Feature Supported?

Exclusive sessions Yes

Parallel sessions No

Table 2: PKCS#11 feature support

Additional Functions
Please note that certain additional functions have been implemented by SafeNet as extensions to the standard. These
include aspects of object cloning, and are described in detail in "SafeNet Extensions to PKCS#11" on page 32

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 29

2 PKCS#11 Support

Using the PKCS#11 Sample
The SafeNet SDK includes a simple "C" language cross platform source example, p11Sample, that demonstrates the
following:

• how to dynamically load the SafeNet cryptoki library

• how to obtain the function pointers to the exported PKCS11 standard functions and the SafeNet extension
functions.

The sample demonstrates how to invoke some, but not all of the API functions.

The SfntLibPath Environment Variable
The sample depends on an environment variable created and exported prior to execution. This variable specifies the
location of cryptoki.dll (Windows) or libCryptoki2.so on Linux/UNIX. The variable is calledSfntLibPath. You are free
to provide your ownmeans for locating the library.

What p11Sample Does
The p11Sample program performs the following actions:

1. The sample first attempts to load the dynamic library in the function called LoadP11Functions. This calls
LoadLibrary (Windows) or dlopen (Linux/UNIX).

2. The function then attempts to get a function pointer to the PKCS11 API C_GetFunctionList using
GetProcAddress (Windows) or dlsym (Linux/UNIX).

3. Once the function pointer is obtained, use the API to obtain a pointer calledP11Functions that points to the static
CK_FUNCTION_LIST structure in the library. This structure holds pointers to all the other PKCS11 API functions
supported by the library.

At this point, if successful, PKCS11 APIs may be invoked like the following:
P11Functions->C_Initialize(...);
P11Functions->C_GetSlotList(...);
P11Functions->C_OpenSession(...);
P11Functions->C_Login(...);
P11Functions->C_GenerateKey(...);
P11Functions->C_Encrypt(...);
:
:
etc

4. The sample next attempts to get a function pointer to the SafeNet extensionAPI CA_GetFunctionList using
GetProcAddress (Windows) or dlsym (Linux/UNIX).

5. Once the function pointer is obtained, use the API to obtain a pointer calledSfntFunctions that points to the static
CK_SFNT_CA_FUNCTION_LIST structure in the library. This structure holds pointers to some but not all of the
other SafeNet extension API functions supported by the library.

6. At this point, if successful, SafeNet extension APIs may be invoked like the following:
SfntFunctions->CA_GetHAState(...);
:
:
etc.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 30

2 PKCS#11 Support

7. Three samplemakefiles are provided:

– one for 32-bit Windows,

– one for 32-bit Linux, and

– one for 64-bit AIX.

You can easily port to another platform with minor changes.

8. To build:

Windows nmake -f Makefile.win32

Linux make -f Makefile.linux.32

Aix make -f Makefile.aix.64

Note: Please note that this simple example loads the cryptoki library directly. If your
application requires integration with cklog or ckshim, you will need to load the required library
(see SDK General for naming on your platform) in lieu of cryptoki. cklog and ckshim will then
use the Chrystoki configuration file to locate and load cryptoki. You also have the option of
locating the cryptoki library by parsing the Chrystoki2 section of the Chrystoki config file. If you
do this, then the initial library (cryptoki, cklog, or ckshim) can be changed by simply updating
the configuration file.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 31

3
Extensions to PKCS#11

This chapter describes the SafeNet extensions to the PKCS#11 standard. It contains the following topics:

• "SafeNet Extensions to PKCS#11" below

• "HSM Configuration Settings" on page 34

• "SafeNet Network HSM-Specific Commands" on page 34

• "Secure PIN Port Authentication" on page 35

• " Shared Login State and Application IDs" on page 36

• "High Availability Indirect Login Functions" on page 39

• "MofN Secret Sharing" on page 42

• "Key Export Features" on page 42

• "Derivation of Symmetric Keys with 3DES_ECB" on page 45

• "PKCS # 11 Extension HA Status Call" on page 45

• "Pseudorandom Function KDFMechanisms" on page 46

• "Derive Template" on page 46

SafeNet Extensions to PKCS#11
This section presents a set of extensions which have been added to PKCS#11 by SafeNet. They cover several areas
of cryptographic protocol/standard support and system information, as follows:

• FIPS 140-2 validation including a secure PIN and data port

• Key CloningTM support

• secret sharing activation support

• support for sharing login state across applications

• support for an alternate login scheme, referred to as "Indirect Login"

• support for manipulating token state vectors

• support for synchronization of multiple SafeNet XL tokens for enhanced cryptographic acceleration.

Other APIs
These commands and functions can also be used as extensions to other Application Programming Interfaces (for
example, OpenSSL).

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 32

3 Extensions to PKCS#11

Summary of New Functions
The several functions defined in this extension to PKCS#11 are introduced in the following table. These functions are
described inmore detail in later sections of this document.

Category Function Description

Key cloning CA_SetCloningDomain Sets the domain string used during token initialization.

CA_ClonePrivateKey Permits the secure transfer a private key (RSA) between a source
token and a target token.

CA_
GenerateTokenKeys

Generate the private keys used for secure key cloning operations.

CA_
GetTokenCertificateInfo

Obtain the cloning certificate.

CA_SetTokenCertificate
Signature

Sign the cloning certificate with the private keys generated for key
cloning operations

Secret Sharing
Activation
(commonly
referred to as
MofN)

CA_SetMofN Sets the security policy for the token to use the secret sharing feature.

CA_GenerateMofN Generates the secret informa-tion on a token.

CA_ActivateMofN Activates a token that has the secret sharing feature enabled.

CA_
GenerateCloneableMofN

Creates a clonable secret-splitting vector on a token.

CA_CloneMofN Copy a clonable secret-splitting vector from one token to another.

CA_DuplicateMofN Creates duplicates (copies) of all MofN secret splits.

CA_ModifyMofN Modifies the secret-splitting vector on a token.

CA_GetMofNStatus Retrieves theMofN structure of the specified token.

Share login state
across
applications

CA_SetApplicationID Sets the application's identifier.

CA_OpenApplicationID Activates an application identifier, independent of any open sessions.

CA_CloseApplicationID Deactivates an application identifier.

Indirect Login CA_InitIndirectPIN Initializes a user PIN so that it may be used normally or indirectly.

CA_IndirectLogin Performs an indirect login operation.

Table 1: Summary of new Cryptoki Functions

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 33

3 Extensions to PKCS#11

Category Function Description

Token State
Vector
Manipulation

CA_GetFPV Retrieves the token's Fixed Policy Vector (FPV).

CA_GetTPV Retrieves the token's Token Policy Vector (TPV).

CA_GetExtendedTPV Retrieves the token's TPV and extended TPV.

CA_SetTPV Sets the token's TPV.

CA_SetExtendedTPV Sets the token's TPV and extended TPV.

XL CA_
GetNumberOfSSLSlots

Determine the number of accelerator slots (distinct from authentication
slots, when SafeNet XL is also used with SafeNet CA 3 .)

CA_
SSLSynchronizeObjects

Designates amaster slot in an XL installation (you pass the slot
number with the call) then clones the content of themaster slot to all
other accelerator slots

Derive andWrap CA_DeriveKeyAndWrap This is an optimization of C_DeriveKey with C_Wrap, merging the two
functions into one (the in and out constraints are the same as for the
individual functions). A further optimization is applied when
mechanism CKM_ECDH1_DERIVE is used with CA_
DeriveKeyAndWrap.

Cryptoki Version Supported
The current release of SafeNet SafeNet Toolkit provides the Chrystoki library supporting version 2.20 of the Cryptoki
standard.

HSM Configuration Settings
SafeNet HSMs implement configuration settings that can be used tomodify the behavior of the HSM, or can be read to
determine how the HSMwill behave. There aremultiple settings that may bemanipulated. Other than the "allow non-
FIPS algorithms", most customers have no need to either query or change HSM settings. If you believe that your
application needs more control over the HSM, please contact SafeNet for guidance.

SafeNet Network HSM-Specific Commands
SafeNet Network HSM, both the HSM Server and the client, use PKCS#11 and the SafeNet Extensions, with some
exceptions that differ from other SafeNet products. This SDK document is meant to support all SafeNet products that
use PKCS#11 and the other supported interfaces, in addition to SafeNet Network HSM.

Commands Not Available Through Libraries
Several commands, both standard PKCS#11 commands and our Extensions are not enabled in the Client, because
their functions are addressed on SafeNet Network HSM via the lunash interface. These are:

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 34

3 Extensions to PKCS#11

• C_InitToken

• C_SetPin

• CA_ResetPin

• CA_SetCloningDomain

• all of the CCM commands

• CA_ClonePrivateKey

• C_GetOperationState

• C_SetOperationState

Configuration Settings
Other SafeNet tokens implement configuration settings that can be used tomodify the behavior of the token, or can be
read to determine how the token will behave.

In SafeNet Network HSM, this configuration andmodification of HSM and behavior is controlled in lunash via HSM
Policies, using the following commands:

• "hsm showpolicies" on page 1

• "hsm changepolicy" on page 1

Control of HSM Partition behavior is accomplished through the HSM Partition Policies, using the following lunash
commands:

• "partition showpolicies" on page 1

• "partition changepolicy" on page 1

Secure PIN Port Authentication
Generally, an application collects an authentication code or PIN from a user and/or other source controlled by the host
computer. With Gemalto's FIPS 140-2 level 3-validated products (such as SafeNet Network HSM), the PIN must come
from a device connected to the secure port of the physical interface (or connected via a secure Remote PED protocol
connection). The SafeNet PED (PIN Entry Device) is used for secure entry of PINs.

A bit setting in the device's capabilities settings determines whether the HSM requires that PINs be entered through the
secure port. If the appropriate configuration bit is set, PINs must be entered through the secure port.

If the device`s configuration bit is off, the applicationmust provide the PIN through the existingmechanism. Through
setting the PIN parameters, the application tells the token where to look for PINs. A similar programming approach
applies to define the key cloning domain identifier.

Applications wanting PINs to be collected via the secure port must pass a NULL pointer for the pPin parameter and a
value of zero for the ulPinLen parameter in function calls with PIN parameters. This restriction applies everywhere
PINs are used. The following functions are affected:

• C_InitToken

• C_InitIndirectToken

• C_InitPIN

• C_SetPIN

• CA_InitIndirectPIN

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 35

3 Extensions to PKCS#11

• C_Login

• CA_IndirectLogin

When domains are generated/collected through the secure port during a C_InitToken call, the applicationmust pass a
NULL pointer for the pbDomainString parameter and a value of zero for the ulDomainStringLen parameter in the CA_
SetCloningDomain function.

Shared Login State and Application IDs
The PKCS#11 specification states that sessions within an application share a login state. An application is defined as
a single address space and all threads that execute within it. Thus, if process A spawns multiple threads, and all of
those threads open sessions on token #1, then all of those sessions share a login state. When one is logged in, they all
are, and when one is logged out, they all are. However, if process B also has sessions open on token #1, they are
independent from the sessions of process A. The login state of process B sessions is irrelevant to process A sessions
(except where they conflict, such as process A logging in as USER when process B is already logged in as SO).

The Chrystoki library provides additional functionality that allows separate applications to share a login state. Within
Chrystoki, each application has an application ID. An application ID is a 64-bit integer, normally specified in two 32-bit
parts. A default application ID for the application is generated automatically by the Chrystoki library, when the
application invokes C_Initialize. The default value is based upon the process ID of the application, so different
applications will always have different application IDs.

Each session also has an application ID associated with it. This is the application ID of the application that created the
session. Within Chrystoki and SafeNet tokens, login states are shared by sessions which have identical application
IDs. Since there is usually a one-to-onemapping between applications and application IDs, this means that login
states are normally shared between sessions within an application but not between applications. In order to allow
separate Chrystoki applications to share session state, Chrystoki provides functionality that allows applications to alter
their application IDs.

Why Share Session State Between Applications?
Formany applications, the functionality described here serves no purpose. If an application consists of a single process
that exists perpetually, unshared session states are sufficient. If the application supports multiple processes, but the
application designer wants each process to validate (login) separately, unshared session states are sufficient.

However, if

• the application consists of multiple processes each with its own sessions and

• the application designer wants to require only one login action by the user and

• the system uses SafeNet CA3 tokens (where PINs cannot be cached and usedmultiple times by the application),

then, it is necessary to share login state between processes.

The SafeNet CA3 token provides FIPS 140-1 level 3 security through use of a separate port for password entry (with
the SafeNet CA3 token, PINs take the form of special data keys). Use of these keys prevents an application from
caching a password and using it to log in with multiple sessions. If you want to log in once only, and you use separate
processes, youmust somehow share login state between processes.

[UPDATE: Applies to newer SafeNet HSMs as well, in some integrations, for ease of use particularly against PED-
authenticated HSMs.]

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 36

3 Extensions to PKCS#11

Login State Sharing Overview
The simplest form the extra Chrystoki functionality takes is theCA_SetApplicationID function. This function should
be invoked afterC_Initialize is invoked, but before any sessions are opened. Two separate applications can use this
function to set their application IDs to the same value, and thus allow them to share login states between their
sessions.

Alternately, theAppIdMajor andAppIdMinor fields in theMisc section of the Chrystoki configuration file can be set.
This causes the default application ID of all applications to be set to the value given in the configuration file, rather than
being generated from the application's process ID. This means that unless applications use theCA_SetApplicationID
function, all applications on a host system will share login state between their sessions.

Example
A sample configuration file (crystoki.ini forWindows) using explicit application IDs is duplicated here:
[Chrystoki2]
LibNT=D:\Program Files\SafeNet\LunaClient\cryptoki.dl
[Luna]
DefaultTimeOut=500000
PEDTimeout1=100000
PEDTimeout2=200000
[CardReader]
RemoteCommand=1
[Misc]
AppIdMajor=2
AppIdMinor=4

One effect that can still cause problems is that when all sessions of a particular application ID are closed, that
application ID reverts to a dormant state. When another session for that application ID is created, the application ID is
recreated, but always in the logged-out state, regardless of the state it was in when it went dormant.

For example, consider an application where a parent process sets its application ID, opens a session, logs the session
in, then closes the session and terminates. Several child pro-cesses then set their application IDs, open sessions and
try to use them. However, since the application ID went dormant when the parent process closed its session, the child
processes find their sessions logged out. The logged-in state of the parent process' session was lost when it closed its
session.

The CA_OpenApplicationID function can be used to ensure that the login state of an application ID is maintained, even
when no sessions exist which belong to that application ID. When CA_OpenApplicationID is invoked, the application
ID is tagged so that it never goes dormant, even if no open ses-sions exist.

Login State Sharing Functions
Use the following functions to configure andmanage login state sharing:

CA_SetApplicationID
CK_RV CK_ENTRY CA_SetApplicationID(
CK_ULONG ulHigh,
CK_ULONG ulLow
);

TheCA_SetApplicationID function allows an application to set its own application ID, rather than letting the
application ID be generated automatically from the application's process ID. CA_SetApplicationID should be invoked

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 37

3 Extensions to PKCS#11

afterC_Initialize but before any sessionmanipulation functions are invoked. If CA_SetApplicationID is invoked after
sessions have been opened, results will be unpredictable.

CA_SetApplicationID always returns CKR_OK.

CA_OpenApplicationID
CK_RV CK_ENTRY CA_OpenApplicationID(
CK_SLOT_ID slotID,
CK_ULONG ulHigh,
CK_ULONG ulLow
);

TheCA_OpenApplicationID function forces a given application ID on a given token to remain active, even when all
sessions belonging to the application ID have been closed. Normally an application ID on a token goes dormant when
the last session that belongs to the application ID is closed. When an application ID goes dormant login state is lost, so
when a new session is created within the application ID, it starts in the logged-out state. However, if CA_
OpenApplicationID is used the application ID is prevented from going dormant, so login state is main-tained even
when all sessions for an application ID are closed.

CA_OpenApplicationID can return CKR_SLOT_ID_INVALID or CKR_TOKEN_NOT_PRESENT.

CA_CloseApplicationID
CK_RV CK_ENTRY CA_CloseApplicationID(
CK_SLOT_ID slotID,
CK_ULONG ulHigh,
CK_ULONG ulLow
);

TheCA_CloseApplicationID function removes the property of an application ID that prevents it from going dormant.
CA_CloseApplicationID also closes any open sessions owned by the given application ID. Thus, whenCA_
CloseApplicationID returns, all open sessions owned by the given application ID have been closed and the applica-
tion ID has gone dormant.

CA_CloseApplicationID can return CKR_SLOT_ID_INVALID or CKR_TOKEN_NOT_PRESENT.

Application ID Examples
The following code fragments show how two separate applications might share a single application ID:
app 1: app 2:
C_Initialize()
CA_SetApplicationID(3,4)
C_OpenSession()
C_Login()

C_Initialize()
CA_SetApplicationID(3,4)
C_OpenSession()
C_GetSessionInfo()
// Session info shows session
// already logged in.
<perform work, no login
necessary>

C_Logout()
C_GetSessionInfo()
// Session info shows session

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 38

3 Extensions to PKCS#11

// logged out.

C_CloseSession()
C_CloseSession()

C_Finalize()
C_Finalize()

The following code fragments show how one process might login for others:

Setup app:
C_Initialize()
CA_SetApplicationID(7,9)
CA_OpenApplicationID(slot,7,9)
C_OpenSession(slot)
C_Login()
C_CloseSession()

Spawnmany child applications:
C_Finalize()

Terminate each child app:
C_Initialize()
CA_SetApplicationID(7,9)
C_OpenSession(slot)
<perform work, no login necessary>

Takedown app:

Terminate child applications:
C_CloseSession()
C_Finalize()

C_Initialize()
CA_CloseApplicationID(slot,7,9)
C_Finalize()

High Availability Indirect Login Functions

Note: In order to implement High Availability Recovery, the primary and secondary tokens
must exist on separate systems.

The following enhancements securely extend the indirect login capability to SafeNet CA3 tokens. SafeNet CA3 tokens
to store sensitive information (encrypted) in flashmemory, andmust therefore be protected against attack by aman-in-
the-middle who physically attacks the target token to expose the contents of flashmemory, and employs that
information against intercepted (or spuriously-generated) message traffic.

The SafeNet CA3 to SafeNet CA3 indirect login protocol also supports old-style MofN authentication between tokens
that share anMofN secret.

Initialization functions
Initialization of tokens in a high-availability environment involves three steps:

1. The generation of an RSA login key pair (the public key of the pair may be discarded),

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 39

3 Extensions to PKCS#11

2. Cloning of the private key member to the User (and optionally to the SO) spaces of all tokens within that
environment and,

3. Calling theCA_HAInit function on all tokens within that environment, in the context of the session owned by the
User or SO.

The first two steps are performed using ordinary key generate and cloning Cryptoki function calls. TheCA_HAInit
function is implemented as follows:

CA_HAInit()
CK_RV CK_ENTRY CA_HAInit(
CK_SESSION_HANDLE hSession, // Logged-in session of user
// who owns the Login key pair
CK_OBJECT_HANDLE hLoginPrivateKey // Handle to Login private key
);

Recovery Functions
The HA recovery mechanism requires the following commands and interface functions:

CA_HAGetMasterPublic()
Called on the primary token, CA_HAGetMasterPublic() retrieves the primary token's TWC (TokenWrapping
Certificate) and returns it as a blob (octet string and length). The format of this function is as follows:
CK_RV CK_ENTRY CA_HAGetMasterPublic(
CK_SLOT_ID slotId, // Slot number of the primary
// token
CK_BYTE_PTR pCertificate, // pointer to buffer to hold
//TWC certificate
CK_ULONG_PTR pulCertificateLen // pointer to value to hold
//TWC certificate length
);

CA_HAGetLoginChallenge()
Called on the secondary token, CA_HAGetLoginChallenge() accepts the TWC blob and returns the secondary
token's login challenge blob. The format of this command is as follows:
CK_RV CK_ENTRY CA_HAGetLoginChallenge(
CK_SESSION_HANDLE hSession, // Public session
CK_USER_TYPE userType, // User type - SO or USER
CK_BYTE_PTR pCertificate, // TWC certificate retrieved
// from primary
CK_ULONG ulCertificateLen, // TWC certificate length
CK_BYTE_PTR pChallengeBlob, // pointer to buffer to hold
// challenge blob
CK_ULONG_PTR pulChallengeBlobLen // pointer to value to hold
// challenge blob length
);

CA_HAAnswerLoginChallenge()
Called on the primary token, CA_HAAnswerLoginChallenge() accepts the login challenge blob and returns the
encrypted SO or User PIN, as appropriate.
CK_RV CK_ENTRY CA_HAAnswerLoginChallenge(
CK_SESSION_HANDLE hSession, // Session of the Login Private

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 40

3 Extensions to PKCS#11

// key owner
CK_OBJECT_HANDLE hLoginPrivateKey, // object handle to login key
CK_BYTE_PTR pChallengeBlob, // pointer to buffer containing
// challenge blob
CK_ULONG ulChallengeBlobLen, // length of challenge blob
CK_BYTE_PTR pEncryptedPin, // pointer to buffer holding
// encrypted PIN
CK_ULONG_PTR pulEncryptedPinLen // pointer to value holding
// encrypted PIN length
);

CA_HALogin()
Called on the secondary token, CA_HALogin() accepts the encrypted PIN and logs the secondary token in. If the
second-ary token requires MofN authentication, anMofN challenge blob is returned. If noMofN authentication is
required, a zero-length blob is returned. The format of this function is as follows:
CK_RV CK_ENTRY CA_HALogin(
CK_SESSION_HANDLE hSession, // Same public session opened
// in CA_HAGetLoginChallenge,
//above
CK_BYTE_PTR pEncryptedPin, // pointer to buffer holding
// encrypted PIN
CK_ULONG ulEncryptedPinLen, // length of encrypted PIN
CK_BYTE_PTR pMofNBlob, // pointer to buffer to hold
// MofN blob
CK_ULONG_PTR pulMofNBlobLen // pointer to value to hold the
// length of MofN blob
);

If the call is successful, then the session now becomes a pri-vate session owned by the User or SO (as appropriate).

CA_AnswerMofNChallenge()
Called on the primary token, CA_AnswerMofNChallenge() accepts theMofN challenge blob and returns the primary
token's maskedMofN secret. The format of this function is as follows:
CK_RV CK_ENTRY CA_HAAnswerMofNChallenge(
CK_SESSION_HANDLE hSession, // Private session
CK_BYTE_PTR pMofNBlob, // passed in MofN blob
CK_ULONG ulMofNBlobLen, // length of MofN blob
CK_BYTE_PTR pMofNSecretBlob, // pointer to buffer to hold
// MofN secret blob
CK_ULONG_PTR pulMofNSecretBlobLen//pointer to value that holds
// the MofN secret blob len
);

CA_HAActivateMofN()
Called on the secondary token, CA_HAActivateMofN() accepts themaskedMofN secret and performs MofN
authentication. The resultingMofN secret is checked against the CRC stored in theMofN PARAM structure.
CK_RV CK_ENTRY CA_HAActivateMofN(
CK_SESSION_HANDLE hSession, // The now-private session from
// successful CA_HALogin call
CK_BYTE_PTR pMofNSecretBlob, // pointer to MofN secret
// blob that is passed in
CK_ULONG ulMofNSecretBlobLen // length of MofN secret blob
);

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 41

3 Extensions to PKCS#11

It is expected that the recovery functions will be executed in the proper sequence and as part of an atomic operation.
Nonetheless, the recovery operationmay be restarted at any time due to an error. Restarting the recovery operation
resets the state condition of the secondary token, and any data that has been stored or generated on the token is
discarded.

Login Key Attributes
The login keys must possess the following attributes to function properly in a HA recovery scenario:
// Object
CKA_CLASS = CKO_PRIVATE_KEY,
// StorageClass
CKA_TOKEN = True,
CKA_PRIVATE = True,
CKA_MODIFIABLE = False,
// Key
CKA_KEY_TYPE = CKK_RSA,
CKA_DERIVE = False,
CKA_LOCAL = True,
// Private
CKA_SENSITIVE = True,
CKA_DECRYPT = False,
CKA_SIGN = False,
CKA_SIGN_RECOVER = False,
CKA_UNWRAP = False,
CKA_EXTRACTABLE = False

Control of HA Functionality
Refer to for themechanisms by which the SO can control availability of the HA functionality.

MofN Secret Sharing
In previous SafeNet HSM releases, this page described library and firmware aspects of MofN secret sharing.

Current implementation (since HSM firmware 5) no longer implements MofN via the HSM.

Instead, MofN is entirely mediated via SafeNet PED 2.4 and later. The HSM is unaware of secret sharing. Multi-person
access control for any of the authentication secrets (SO, User, Cloning domains, Remote PED Vector, Secure
Recovery Vector) is a PED function, and the HSM sees only the fully reconstitutedMofN secrets as they are presented
to it by the PED.

Green PED Keys are no longer used.

This implementation is both cleaner andmore flexible than the legacy implementation.If you have used, or are still using
legacy SafeNet HSMs, be aware that the legacy implementation of MofN split-secret, multi-person access control is
not compatible with themodern implementation. For migration instructions, contact SafeNet Technical Support -- e-
mail: support@safenet-inc.com or phone 800-545-6608 (+1 410-931-7520 International)

Key Export Features
The SafeNet Key Export HSM provides the feature(s) detailed in this section.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 42

3 Extensions to PKCS#11

RSA Key Component Wrapping
The RSA Key Component Wrapping is a feature that allows an application to wrap any subset of attributes from an
RSA private key with 3-DES. Access to the feature is through the PKCS #11 function C_WrapKey with the CKM_
DES3_ECB mechanism. The wrapping key must be a CKK_DES2 or CKK_DES3 key with its CKA_WRAP attribute
set to TRUE. The key to wrapmust be an RSA private key with CKA_EXTRACTABLE set to TRUE and the FPV must
have FPV_WRAPPING_TOKEN turned on.

The details of the wrapping format are specified with a format descriptor. The format descriptor is provided as the
mechanism parameter to the CKM_DES3_ECB mechanism. This descriptor consists of a 32-bit format version,
followed by a set of field element descriptors. Each field element descriptor consists of a 32-bit Field Type Identifier and
optionally some additional data. The SafeNet firmware parses the set of field element descriptors and builds the custom
layout of the RSA private key in an internal buffer. Once all field element descriptors are processed, the buffer is
wrapped with 3-DES and passed out to the calling application. It is the responsibility of the calling application to ensure
that the buffer is amultiple of 8 bytes.

The format descriptor version (the first 32-bit value in the format data) must always be set to zero.

The set of supported field element descriptor constants is as follows:

• #define KM_APPEND_STRING 0x00000000

• #define KM_APPEND_ATTRIBUTE 0x00000001

• #define KM_APPEND_REVERSED_ATTRIBUTE 0x00000002

• #define KM_APPEND_RFC1423_PADDING 0x00000010

• #define KM_APPEND_ZERO_PADDING 0x00000011

• #define KM_APPEND_ZERO_WORD_PADDING 0x00000012

• #define KM_APPEND_INV_XOR_CHECKSUM 0x00000020

• #define KM_DEFINE_IV_FOR_CBC 0x00000030

Themeanings of the field element descriptors is as follows:

Field element
descriptor

Description

KM_APPEND_
STRING

Appends an arbitrary string of bytes to the custom layout buffer.
The field type identifier is followed by a 32-bit length field defining the number of bytes to append.
The length field is followed by the bytes to append.
There is no restriction of the length of data that may be appended, as long as the total buffer length
does not exceed 3072 bytes.

KM_APPEND_
ATTRIBUTE

Appends an RSA private key component into the buffer in big endian representation.
The field type identifier is followed by a 32-bit CK_ATTRIBUTE_TYPE value set to one of the
following: CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_
1, CKA_EXPONENT_2, or CKA_COEFFICIENT..
The key component is padded with leading zeros such that the length is equal to themodulus
length in the case of the private exponent, or equal to half of themodulus length in the case of the
other 5 components.

KM_APPEND_
REVERSED_

Appends an RSA private key component into the buffer in little endian representation.
The field type identifier is followed by a 32-bit CK_ATTRIBUTE_TYPE value set to one of the

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 43

3 Extensions to PKCS#11

Field element
descriptor

Description

ATTRIBUTE following: CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_
1, CKA_EXPONENT_2, or CKA_COEFFICIENT.
The key component is padded with trailing zeros such that the length is equal to themodulus
length in the case of the private exponent, or equal to half of themodulus length in the case of the
other 5 components.

KM_APPEND_
RFC1423_
PADDING

Applies RFC 1423 padding to the buffer (appends 1 to 8 bytes with values equal to the number of
bytes, such that the total buffer length becomes amultiple of 8).
This would typically be the last formatting element in a set, but this is not enforced.

KM_APPEND_
ZERO_
PADDING

Applies Zero padding to the buffer (appends 0 to 7 bytes with values equal to Zero, such that the
total buffer length becomes amultiple of 8).
This would typically be the last formatting element in a set, but this is not enforced.

KM_APPEND_
ZERO_WORD_
PADDING

Zero pads the buffer to the next 32-bit word boundary.

KM_APPEND_
INV_XOR_
CHECKSUM

Calculates and adds a checksum byte to the buffer.
The checksum is calculated as the complement of the bytewise XOR of the buffer being built.

KM_DEFINE_
IV_FOR_CBC

Allows definition of an IV so that 3DES_CBC wrapping can be performed even though the
functionality is invoked with the CKM_3DES_ECB mechanism.
The field type identifier is followed by a 32-bit length field, whichmust be set to 8.
The length is followed by exactly 8 bytes of data which are used as the IV for the wrapping
operation.

Examples
Towrap just the private exponent of an RSA key in big endian representation, the parameters would appear as follows:

Note: Ensure that the packing alignment for your structures uses one (1) byte boundaries.

struct
{
UInt32 version = 0;
UInt32 elementType = KM_APPEND_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute = CKA_PRIVATE_EXPONENT;
}

Towrap the set of RSA key components Prime1, Prime2, Coefficient, Exponent1, Exponent2 in little endian represen-
tation with a leading byte of 0x05 and ending with a CRC byte and then zero padding, the parameters would appear in a
packed structure as follows:
struct
{
UInt32 version = 0;
UInt32 elementType1 = KM_APPEND_STRING;
UInt32 length = 1;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 44

3 Extensions to PKCS#11

UInt8 byteValue = 5;
UInt32 elementType2 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute1 = CKA_PRIME_1;
UInt32 elementType3 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute2 = CKA_PRIME_2;
UInt32 elementType4 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute3 = CKA_COEFFICIENT;
UInt32 elementType5 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute4 = CKA_EXPONENT_1;
UInt32 elementType6 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute5 = CKA_EXPONENT_2;
UInt32 elementType7 = KM_APPEND_INV_XOR_CHECKSUM;
UInt32 elementType8 = KM_APPEND_ZERO_PADDING;
}

Derivation of Symmetric Keys with 3DES_ECB
SafeNet supports derivation of symmetric keys by the encryption of "diversification data" with a base key. Access to
the derivation functionality is through the PKCS #11 C_DeriveKey function with the CKM_DES3_ECB and CKM_
DES_ECB mechanism. Diversification data is provided as themechanism parameter. The derived key can be any type
of symmetric key. The encrypted data forms the CKA_VALUE attribute of the derived key. A template provided as a
parameter to the C_DeriveKey function defines all other attributes.

Rules for the derivation are as follows:

• The Base Key must be of type CKK_DES2 or CKK_DES3when using CKM_DES3_ECB. It must be of type CKK_
DES when using CKM_DES_ECB.

• The base key must have its CKA_DERIVE attribute set to TRUE.

• The template for the derived key must identify the key type (CKA_KEY_TYPE) and length (CKA_VALUE_LEN).
The type and lengthmust be compatible. The length can be omitted if the key type supports only one length. (E.g.,
If key type is CKK_DES2, the lengthmust either be explicitly defined as 16, or be omitted to allow the value to
default to 16). Other attributes in the templatemust be consistent with the security policy settings of the SafeNet
HSM.

• The derivationmechanismmust be set to CKM_DES3_ECB or CKM_DES_ECB, themechanism parameter
pointer must point to the diversification data, and themechanism parameter lengthmust be set to the diversification
data length.

• The diversification datamust be the same length as the key to be derived, with one exception. If the key to be
derived is16 bytes, the base key is CKK_DES2 and the diversification data is only 8 bytes, then the data is
encrypted twice - once with the base key and once with the base key with its halves reversed. Joining the two
encrypted pieces forms the derived key.

• If the derived key is of type CKK_DES, CKK_DES2 or CKK_DES3, odd key parity is applied to the new key value
immediately following the encryption of the diversification data. The encrypted data is taken as-is for the formation
of all other types of symmetric keys.

PKCS # 11 Extension HA Status Call
A SafeNet extension to the PKCS#11 standard allows query of the HA group state.

Function Definition
CK_RV CK_ENTRY CA_GetHAState(CK_SLOT_ID slotId, CK_HA_STATE_PTR pState);

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 45

3 Extensions to PKCS#11

The structure definitions for a CK_HA_STATE_PTR and CK_HA_MEMBER are:
typedef struct CK_HA_MEMBER{
CK_ULONG memberSerial;
CK_RV memberStatus;
}CK_HA_MEMBER;

typedef struct CK_HA_STATUS{
CK_ULONG groupSerial;
CK_HA_MEMBER memberList[CK_HA_MAX_MEMBERS];
CK_USHORT listSize;
}CK_HA_STATUS;

See the JavaDocs included with the software for a description of the Javamethods derived from this cryptoki function.

Pseudorandom Function KDF Mechanisms
The SafeNet HSMs support the following two vendor definedmechanisms. They can be used to perform Counter Mode
KDF (key derivation functions) using various CMAC algorithms (DES3, AES, ARIA, SEED) as the PRF (pseudo-
random function). See NIST SP 800-108. Thesemechanisms are available in firmware 6.2.1 and later.
#define CKM_NIST_PRF_KDF (CKM_VENDOR_DEFINED + 0xA02)
#define CKM_PRF_KDF (CKM_VENDOR_DEFINED + 0xA03)

/* Parameter and values used with CKM_PRF_KDF and * CKM_NIST_PRF_KDF. */

typedef CK_ULONG CK_KDF_PRF_TYPE;
typedef CK_ULONG CK_KDF_PRF_ENCODING_SCHEME;

/** PRF KDF types */
#define CK_NIST_PRF_KDF_DES3_CMAC 0x00000001
#define CK_NIST_PRF_KDF_AES_CMAC 0x00000002
#define CK_PRF_KDF_ARIA_CMAC 0x00000003
#define CK_PRF_KDF_SEED_CMAC 0x00000004

#define LUNA_PRF_KDF_ENCODING_SCHEME_1 0x00000000
#define LUNA_PRF_KDF_ENCODING_SCHEME_2 0x00000001

typedef struct CK_KDF_PRF_PARAMS {
CK_KDF_PRF_TYPE prfType;
CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_BYTE_PTR pContext;
CK_ULONG ulContextLen;
CK_ULONG ulCounter;
CK_KDF_PRF_ENCODING_SCHEME ulEncodingScheme;

} CK_PRF_KDF_PARAMS;

typedef CK_PRF_KDF_PARAMS CK_PTR CK_KDF_PRF_PARAMS_PTR;

Derive Template
The CKA_DERIVE_TEMPLATE attribute is an optional extension to the C_DeriveKey function. This attribute points to
an array template which provides additional security by restricting important attributes in the resulting derived key. This

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 46

3 Extensions to PKCS#11

derive template, along with the user-supplied application template (called pTemplate in the PKCS#11 specification),
determine the attributes of the derived key.

To invoke a derive template, the base key must have the CKA_DERIVE_TEMPLATE attribute set, pointing to a user-
supplied derive template. When you specify this attribute on the base key and then attempt to derive a key, the derive
operation adds the attributes of the application template to the attributes in the derive template. If there are any
mismatches between attribute values specified in the two templates, the derive operation fails. Otherwise, the
operation succeeds, producing a derived key with the combined attributes of the two templates.

Any and all attributes which are valid for application template of a particular mechanism are also valid for the derive
template. For security, themost effective attributes to restrict are those whichmight allow the derived key to be
misused or expose secret information. Broadly these include but are not limited to encryption/decryption capabilities,
extractability, the CKA_SENSITIVE attribute and the CKA_MODIFIABLE attribute. All mechanisms which support key
derivation also support derive templates.

Examples
The following examples show a successful derivation with a derive template, and a failed derivation.

Successful Derivation
Here, the base key has the CKA_DERIVE_TEMPLATE attribute pointing to the derive template dTmplt. There are no
conflicts between dTmplt and the application template. The application template's extra attributes are added to
dTmplt's attributes, and the derivation operation produces a derived key containing the attributes in the two templates.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 47

3 Extensions to PKCS#11

Failed Derivation
Here, the base key has the CKA_DERIVE_TEMPLATE attribute pointing to the derive template dTmplt. Notice that
dTmplt has the CKA_DECRYPT attribute set to false, where the application template has the CKA_DECRYPT
attribute set to true. This conflict causes the derivation operation to fail with the error TEMPLATE_INCONSISTENT.

Unwrap Template
The CKA_UNWRAP_TEMPLATE attribute is an optional extension to the C_UnwrapKey function. This attribute points
to an array template which provides additional security by restricting important attributes in the resulting unwrapped
key. This unwrap template, along with the user-supplied application template (called uTemplate in the PKCS#11
specification), determine the attributes of the unwrapped key.

To invoke an unwrap template, the base key must have the CKA_UNWRAP_TEMPLATE attribute set, pointing to a
user-supplied unwrap template. When you specify this attribute on the base key and then attempt to unwrap a key, the
unwrap operation adds the attributes of the application template to the attributes in the unwrap template. If there are any
mismatches between attribute values specified in the two templates, the unwrap operation fails. Otherwise, the
operation succeeds, producing an unwrapped key with the combined attributes of the two templates.

Any and all attributes which are valid for application template of a particular mechanism are also valid for the unwrap
template. For security, themost effective attributes to restrict are those whichmight allow the unwrapped key to be
misused or expose secret information. All mechanisms that support key unwrapping also support unwrap templates.

Use Case Example
Key wrapping of asymmetric keys using asymmetric keys. Assume a 2-level wrapping scheme

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 48

3 Extensions to PKCS#11

• Level 1: a private key stored on the HSMwill have the suggested attributes; so far, so good

• Level 2: a wrapped symmetric key is used to wrap an asymmetric key - this is where CKA_UNWRAP_TEMPLATE
would be used on the Level 1 key to enforce these attributes on the Level 2 key as well; without CKA_UNWRAP_
TEMPLATE feature the application would have to rely on the software to ensure that attributes for the Level 2 key
are set appropriately.

Like this:

Since asymmetric keys are too big to be directly wrapped using another asymmetric key (2k key in PKCS#8would be
probably require an 8K wrapping key...) use 2 layers of wrapping:

Wrapping:
- 2k RSA private key is wrapped using an random symmetric key (all keys and operations in software)

- random symmetric key is wrapped using 2K RSA public key (all keys and operations in software, matching private key
for public key in HSM)

Unwrapping:
- unwrap symmetric key onto the HSM using private key on the HSM (here, want to use CKA_UNWRAP_TEMPLATE
to ensure that the unwrapped symmetric key can be used to unwrap only)

- unwrap 2K RSA private key onto HSM, use it and delete it.

Examples
The following examples show a successful unwrapping with an unwrap template, and a failed unwrap.

Successful Unwrap
Here, the base key has the CKA_UNWRAP_TEMPLATE attribute pointing to the unwrap template uTmplt. There are
no conflicts between uTmplt and the application template. The application template's extra attributes are added to
uTmplt's attributes, and the unwrap operation produces an unwrapped key containing the attributes in the two
templates.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 49

3 Extensions to PKCS#11

Failed Unwrap
Here, the base key has the CKA_UNWRAP_TEMPLATE attribute pointing to the unwrap template uTmplt. Notice that
uTmplt has the CKA_UNWRAP attribute set to false, where the application template has the CKA_UNWRAP attribute
set to true. This conflict causes the unwrap operation to fail with the error TEMPLATE_INCONSISTENT.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 50

3 Extensions to PKCS#11

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 51

4
Supported Mechanisms

This chapter provides an alphabetical listing of the supported PKCS #11 standardmechanisms and SafeNet proprietary
mechanisms.

Mechanism Remap for FIPS Compliance
Under FIPS 186-3/4, the only RSA methods permitted for generating keys are 186-3 with primes and 186-3 with aux
primes. This means that RSA PKCS and X9.31 key generation is no longer approved for operation in a FIPS-compliant
HSM. Firmware version 6.2.1 and older supported only PKCS and X9.31, and these were allowed in FIPS mode.
Firmware versions 6.10 through 6.21 provide the newermechanisms, and allow both older and newermechanisms in
FIPS mode. Firmware versions 6.22.0 and newer do not allow PKCS and X9.31 in FIPS mode.

Firmware Version Supported Mechanisms FIPS-mode Allowed
Mechanisms

fw <= 6.2.1 PKCS, X9.31 PKCS, X9.31

6.10 <= fw <= 6.21 PKCS, X9.31, 186-3 with primes, 186-3 with aux primes PKCS, X9.31, 186-3 with primes,
186-3 with aux primes

fw >= 6.22.0 PKCS, X9.31, 186-3 with primes, 186-3 with aux primes 186-3 with primes, 186-3 with aux
primes

Mechanism Remap Configuration Settings
Two configuration settings are available in the Chrystoki.conf (Linux/UNIX) or Crystoki.ini (Windows) configuration file
installed with SafeNet HSM Client, to deal with calls to newer-firmware HSMs for outdatedmechanisms, or calls to
older-firmware HSMs for newermechanisms that they do not support. The configuration settings control redirecting or
mapping of mechanism calls.

Redirect Old to New
Under the configuration file's [Misc] section, RSAKeyGenMechRemap can be set to 0 or 1.

• WhenRSAKeyGenMechRemap is set to 0 (the default) and firmware version is 6.10.x or greater, no re-mapping is
performed.

• WhenRSAKeyGenMechRemap is set to 1 and firmware version is 6.10.x or greater, the following re-mapping
occurs:

– PKCS Key Gen --> 186-3 Prime key gen

– X9.31 Key Gen --> 186-3 Aux Prime key gen

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 52

4 SupportedMechanisms

Note: This setting is intended for older applications, allowing them to continue to call outdated
mechanisms, but have the calls redirected to newer, equivalent, FIPS-acceptable
mechanisms, while your software development or integration catches up.

The following table summarizes the possible combinations, for firmware versions that are supported in SafeNet HSM
6.0 and later.

Firmware version State of
RSAKeyGen
MechRemap

Action in your application Result

6.2.x N/A N/A • RSAKeyGenMechRemap has no effect

6.10- through-6.21 0
Call PKCS Key Gen
or X9.31 Key Gen

• PKCS Key Gen or X9.31 Key Gen is
called and runs as requested

• redirect is not set, and does not occur

1 • call is redirected and 186-3 Prime key
gen or 186-3 Aux Prime key gen is run

0
Call 186-3 Prime key gen
or 186-3 Aux Prime key gen

• either set of mechanisms is available
• 186-3 Prime key gen or 186-3 Aux Prime

key gen is run as requested

1 • either set of mechanisms is available
• 186-3 Prime key gen or 186-3 Aux Prime

key gen is run as requested

6.22.0 or newer 0
Call PKCS Key Gen
or X9.31 Key Gen

• Error message; old mechanism does not
exist and no redirect is indicated [see
Note 1]

1 • oldmechanisms do not exist in FIPS
mode; new ones exist

• call is redirected and 186-3 Prime key
gen or 186-3 Aux Prime key gen is run

Note 1: Calling an unsupportedmechanism, where no redirect is in place, yields error CKR_MECHANISM_
INVALID

Note 2: If RSA-PKCS keys or X9.31 keys were previously created by an older firmware version, and firmware is
updated to version 6.22.0, then :
• keys of size 2048 or 3072 bits can still be used for sign and verify operations
• keys of size 1024-up-to-4096 bits can be used to verify existing signatures, only.
• when FIPS186-4 with SP800-131A is applied, it disallows RSA 4096-bit keys for signing

In FIPS mode

When RSAKeyGenMechRemap is enabled,
1. CKM_RSA_PKCS_KEY_PAIR_GEN is inserted into the C_GetMechanismList output by the client library, as the

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 53

4 SupportedMechanisms

HSM does not return it in FIPS mode.

2. C_GetMechanismInfo for CKM_RSA_PKCS_KEY_PAIR_GEN returns the default Mechanism information from
the client library. In FIPS mode, the HSM does not return it.

When RSAKeyGenMechRemap is disabled
1. CKM_RSA_PKCS_KEY_PAIR_GEN is not returned by C_GetMachanismList.

2. C_GetMachanismInfo for CKM_RSA_PKCS_KEY_PAIR_GEN results in an Invalid Mechanism Attribute error.

Redirect New to Old
Under the configuration file's [Misc] section, RSAPre1863KeyGenMechRemap can be set to 0 or 1.

• WhenRSAPre1863KeyGenMechRemap is set to 0 (the default) and firmware is version 6.2.x, no re-mapping is
performed.

• WhenRSAPre1863KeyGenMechRemap is set to 1 and firmware is version 6.2.x, the following re-mapping occurs:

– 186-3 Prime key gen --> PKCS Key Gen

– 186-3 Aux Prime key gen --> X9.31 Key Gen

CAUTION: This setting is intended for evaluation purposes, such as with existing integrations
that require newermechanisms, before you update to firmware that actually supports themore
securemechanisms. Be careful with this setting, whichmakes it appear you are getting a new,
securemechanism, when really you are getting an outdated, insecuremechanism.

The following table summarizes the possible combinations, for firmware versions that are supported in SafeNet HSM
6.0 and later.

Firmware version State of
RSAPre1863
KeyGen
MechRemap

Action in your application Result

6.2.x 0 Call PKCS Key Gen
or X9.31 Key Gen

• PKCS Key Gen or X9.31 Key Gen is
called and runs

1 • PKCS Key Gen or X9.31 Key Gen is
called and runs

0
Call 186-3 Prime key gen
or 186-3 Aux Prime key gen

• Call fails; new mechanism does not
exist

1 • PKCS Key Gen or X9.31 Key Gen is
called and runs

• new mechanism does not exist;
redirect to old [see Note 1]

6.10- through-6.22 N/A N/A • RSAPre1863KeyGenMechRemap
has no effect

Note 1: The inclusion of redirection to the outdatedmechanisms, where the firmware does not support the newer

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 54

4 SupportedMechanisms

Firmware version State of
RSAPre1863
KeyGen
MechRemap

Action in your application Result

mechanisms, allows you to [re-]write your implementation to call the newer, FIPS-approvedmechanisms, yet allows
you to use that application with older-firmware HSMs - perhaps in amixed or transitioning environment.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 55

4 SupportedMechanisms

CKM_2DES_DERIVE

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 56

4 SupportedMechanisms

CKM_AES_CBC

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 57

4 SupportedMechanisms

CKM_AES_CBC_ENCRYPT_DATA

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 58

4 SupportedMechanisms

CKM_AES_CBC_PAD

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 59

4 SupportedMechanisms

CKM_AES_CBC_PAD_EXTRACT

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 60

4 SupportedMechanisms

CKM_AES_CBC_PAD_EXTRACT_DOMAIN_CTRL

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 61

4 SupportedMechanisms

CKM_AES_CBC_PAD_EXTRACT_FLATTENED

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 62

4 SupportedMechanisms

CKM_AES_CBC_PAD_EXTRACT_PUBLIC

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 63

4 SupportedMechanisms

CKM_AES_CBC_PAD_EXTRACT_PUBLIC_FLATTENED

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 64

4 SupportedMechanisms

CKM_AES_CBC_PAD_INSERT

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 65

4 SupportedMechanisms

CKM_AES_CBC_PAD_INSERT_DOMAIN_CTRL

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 66

4 SupportedMechanisms

CKM_AES_CBC_PAD_INSERT_FLATTENED

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 67

4 SupportedMechanisms

CKM_AES_CBC_PAD_INSERT_PUBLIC

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 68

4 SupportedMechanisms

CKM_AES_CBC_PAD_INSERT_PUBLIC_FLATTENED

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 69

4 SupportedMechanisms

CKM_AES_CBC_PAD_IPSEC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CBC_PAD_IPSEC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 70

4 SupportedMechanisms

CKM_AES_CFB8

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 1

Key types AES

Algorithms AES

Modes CFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 71

4 SupportedMechanisms

CKM_AES_CFB128

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 16

Key types AES

Algorithms AES

Modes CFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 72

4 SupportedMechanisms

CKM_AES_CMAC

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes MAC

Flags Extractable | CMAC

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 73

4 SupportedMechanisms

CKM_AES_CTR

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CTR

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 74

4 SupportedMechanisms

CKM_AES_ECB

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 75

4 SupportedMechanisms

CKM_AES_ECB_ENCRYPT_DATA

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 76

4 SupportedMechanisms

CKM_AES_GCM
GCM is the Galois/Counter Mode of operation of the AES algorithm for symmetric key encryption.

Note: If GCM input is confined to data that will not be encrypted, then you can useGMAC (see
"CKM_AES_GMAC" on the next page) instead for much better performance in authentication-
only mode on the input data.

Note: Do not attempt to usemechanism CKM_AES_GCM for data bigger than 16kilobytes.

Note: Random initialization vector (IV) is supported and recommended for GCM and for
GMAC. In FIPS mode, the HSM firmware does not accept the IV parameter, and instead
returns a generated IV.

If you are using CKDEMO to try CKM_AES_GCM, be aware that CKDEMO generally defaults
to an external IV, so for an HSM in FIPS mode, be sure to set CKDEMOmenu item 98Options,
item 11 - GCM IV Source to "internal" instead of "external", otherwise CKM_AES_GCMwould
return CKR_MECHANISM_PARAM_INVALID)

Note: Our GMAC andGCM are single part operations, so even if they are called usingmulti-
part API, we accumulate the data (up to amaximum) and return data only on the “final”
operation. That is themeaning of "Accumulating" in the table, below.

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes GCM

Flags Extractable | Accumulating

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 77

4 SupportedMechanisms

CKM_AES_GMAC
GCM is the Galois/Counter Mode of operation of the AES algorithm for symmetric key encryption. GMAC is a variant of
GCM for sign/verify operation. If GCM input is confined to data that will not be encrypted, thenGMAC is purely an
authenticationmode on the input data. The SafeNet HSMGMAC implementation, formerly invoked only via PKCS#11
interface, can now be accessed via JCPROV and via our Java Provider (see Notes, below).

TheGMAC implementation follows NIST SP-800-38D. It supports AES symmetric key sizes of 128, 192, and 256 bits.

If the HSM is in FIPS mode (see HSM policy 12 at HSM Capabilities and Policies), the initialization vector (IV) is
generated in the HSM and returned to the PKCS#11 function call. The buffer must be large enough to store the GMAC
tag plus the generated IV (which has a length of 16 bytes).

If the HSM is not in FIPS mode, then the developer is responsible to specify an IV. Random IV is supported and
recommended for GCM andGMAC. If you are not using random IV, then themost efficient IV value length is 12 bytes;
any other size reduces performance and requires more work (per NIST SP-800-38D).

Note: For PKCS#11, to achieve highest performance, use the Gemalto-SafeNet defined CK_
AES_GMAC_PARAMS to define the GMAC operation parameters (additional authenticated
data, tag size, IV and the IV size). To initialize the sign operation, use the CKM_AES_GMAC
mechanism.

For authentication, it is possible to use CKM_AES_GCMmechanism, when passing no data to
encrypt (for strict compliance with NIST specification), and performance in that mode is better
than in previous SafeNet releases. However, expect lower performance than would be obtained
from CKM_AES_GMAC for the same purpose.

Note: JCPROV - at time of writing (August 2015) GMAC is supported, but GCM is not. Use
CK_AES_CMAC_PARAMS.java to define the GMAC operation. Implementation is the same
as for PKCS#11.

Note: Java Provider (JSP) - both GMC andGMAC are supported. "GmacAesDemo.java"
provides a sample for using GMAC with Java.

Java Parameter Specification class LunaGmacParameterSpec.java defines default values
recommended by the NIST specification.

Note: The correlation is not exact but, as a general rule for a givenmechanism, invocation by
PKCS#11 API always provides the best performance, JSP performance is close but lower due
to Java architecture, and JCPROV performance is somewhat lower still than PKCS#11 and
JSP performance levels.

Note: Our GMAC andGCM are single part operations, so even if they are called usingmulti-
part API, we accumulate the data (up to amaximum) and return data only on the “final”
operation. That is themeaning of "Accumulating" in the table, below.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 78

4 SupportedMechanisms

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes GCM

Flags Extractable | Accumulating

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 79

4 SupportedMechanisms

CKM_AES_KEY_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 80

4 SupportedMechanisms

CKM_AES_KW
NIST Special Publication 800-38F describes cryptographic methods that are approved for “key wrapping,” that is, the
protection of the confidentiality and integrity of cryptographic keys. In addition to describing existingmethods, that
publication specifies two new, deterministic authenticated-encryptionmodes of operation of the Advanced Encryption
Standard (AES) algorithm: the AES Key Wrap (KW)mode and the AES Key WrapWith Padding (KWP)mode.
Gemalto's SafeNet HSMs implement the AES Key Wrap (KW)mode at this time, which SP800-38F recommends as
more secure than CKM_AES_CBC. Your HSMmust have firmware 6.24 installed, in order to make use of the new
mechanism.

Note: NIST Special Publication 800-38F recommends this method as more secure than CKM_
AES_CBC.

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 8

Digest size 0

Key types AES

Algorithms AES

Modes KW

Flags Extractable | Accumulating

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 81

4 SupportedMechanisms

CKM_AES_MAC

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 82

4 SupportedMechanisms

CKM_AES_OFB

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes OFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 83

4 SupportedMechanisms

CKM_ARIA_CBC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 84

4 SupportedMechanisms

CKM_ARIA_CBC_ENCRYPT_DATA

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types ARIA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 85

4 SupportedMechanisms

CKM_ARIA_CBC_PAD

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 86

4 SupportedMechanisms

CKM_ARIA_CFB8

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 1

Key types ARIA

Algorithms ARIA

Modes CFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 87

4 SupportedMechanisms

CKM_ARIA_CFB128

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 16

Key types ARIA

Algorithms ARIA

Modes CFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 88

4 SupportedMechanisms

CKM_ARIA_CMAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable | CMAC

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 89

4 SupportedMechanisms

CKM_ARIA_CTR

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CTR

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 90

4 SupportedMechanisms

CKM_ARIA_ECB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 91

4 SupportedMechanisms

CKM_ARIA_ECB_ENCRYPT_DATA

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types ARIA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 92

4 SupportedMechanisms

CKM_ARIA_GCM

Note: Our GCM is a single part operation, so even if it is called usingmulti-part API, we
accumulate the data (up to amaximum) and return data only on the “final” operation. That is the
meaning of "Accumulating" in the table, below.

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes GCM

Flags Extractable | Accumulating

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 93

4 SupportedMechanisms

CKM_ARIA_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types ARIA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 94

4 SupportedMechanisms

CKM_ARIA_L_CBC

Summary
FIPS approved? No

Supported functions Decrypt | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 95

4 SupportedMechanisms

CKM_ARIA_L_CBC_PAD

Summary
FIPS approved? No

Supported functions Decrypt | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 96

4 SupportedMechanisms

CKM_ARIA_L_ECB

Summary
FIPS approved? No

Supported functions Decrypt | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 97

4 SupportedMechanisms

CKM_ARIA_L_MAC

Summary
FIPS approved? No

Supported functions Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 98

4 SupportedMechanisms

CKM_ARIA_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 99

4 SupportedMechanisms

CKM_ARIA_OFB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes OFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 100

4 SupportedMechanisms

CKM_CAST3_CBC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 101

4 SupportedMechanisms

CKM_CAST3_CBC_PAD

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 102

4 SupportedMechanisms

CKM_CAST3_ECB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 103

4 SupportedMechanisms

CKM_CAST3_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types CAST3

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 104

4 SupportedMechanisms

CKM_CAST3_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 105

4 SupportedMechanisms

CKM_CAST5_CBC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 106

4 SupportedMechanisms

CKM_CAST5_CBC_PAD

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 107

4 SupportedMechanisms

CKM_CAST5_ECB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 108

4 SupportedMechanisms

CKM_CAST5_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 0

Digest size 0

Key types CAST5

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 109

4 SupportedMechanisms

CKM_CAST5_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 110

4 SupportedMechanisms

CKM_CONCATENATE_BASE_AND_DATA

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 111

4 SupportedMechanisms

CKM_CONCATENATE_BASE_AND_KEY

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 112

4 SupportedMechanisms

CKM_CONCATENATE_DATA_AND_BASE

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 113

4 SupportedMechanisms

CKM_CONCATENATE_KEY_AND_BASE

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 114

4 SupportedMechanisms

CKM_DES_CBC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 115

4 SupportedMechanisms

CKM_DES_CBC_ENCRYPT_DATA

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 116

4 SupportedMechanisms

CKM_DES_CBC_PAD

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 117

4 SupportedMechanisms

CKM_DES_ECB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 118

4 SupportedMechanisms

CKM_DES_ECB_ENCRYPT_DATA

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 119

4 SupportedMechanisms

CKM_DES_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types DES

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 120

4 SupportedMechanisms

CKM_DES_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 121

4 SupportedMechanisms

CKM_DES2_DUKPT_DATA
The CKM_DES2_DUKPT family of key derivemechanisms create keys used to protect EFTPOS terminal sessions.
Themechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI X9.24 part 1.

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

• Only CKK_DES2 keys can be derived. Themechanism will force the CKA_KEY_TYPE attribute of the derived
object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be CKK_DES2.

• Themechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

• The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number (KSN).

• This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting object.

The DUKPTMAC andDATA versions will default to the appropriate usagemechanism as described in the following
table:

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 122

4 SupportedMechanisms

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 123

4 SupportedMechanisms

CKM_DES2_DUKPT_DATA_RESP
The CKM_DES2_DUKPT family of key derivemechanisms create keys used to protect EFTPOS terminal sessions.
Themechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI X9.24 part 1.

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

• Only CKK_DES2 keys can be derived. Themechanism will force the CKA_KEY_TYPE attribute of the derived
object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be CKK_DES2.

• Themechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

• The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number (KSN).

• This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting object.

The DUKPTMAC andDATA versions will default to the appropriate usagemechanism as described in the following
table:

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 124

4 SupportedMechanisms

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 125

4 SupportedMechanisms

CKM_DES2_DUKPT_MAC
The CKM_DES2_DUKPT family of key derivemechanisms create keys used to protect EFTPOS terminal sessions.
Themechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI X9.24 part 1.

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

• Only CKK_DES2 keys can be derived. Themechanism will force the CKA_KEY_TYPE attribute of the derived
object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be CKK_DES2.

• Themechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

• The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number (KSN).

• This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting object.

The DUKPTMAC andDATA versions will default to the appropriate usagemechanism as described in the following
table:

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 126

4 SupportedMechanisms

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 127

4 SupportedMechanisms

CKM_DES2_DUKPT_MAC_RESP
The CKM_DES2_DUKPT family of key derivemechanisms create keys used to protect EFTPOS terminal sessions.
Themechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI X9.24 part 1.

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

• Only CKK_DES2 keys can be derived. Themechanism will force the CKA_KEY_TYPE attribute of the derived
object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be CKK_DES2.

• Themechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

• The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number (KSN).

• This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting object.

The DUKPTMAC andDATA versions will default to the appropriate usagemechanism as described in the following
table:

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 128

4 SupportedMechanisms

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 129

4 SupportedMechanisms

CKM_DES2_DUKPT_PIN
The CKM_DES2_DUKPT family of key derivemechanisms create keys used to protect EFTPOS terminal sessions.
Themechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI X9.24 part 1.

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

• Only CKK_DES2 keys can be derived. Themechanism will force the CKA_KEY_TYPE attribute of the derived
object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be CKK_DES2.

• Themechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

• The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number (KSN).

• This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting object.

The DUKPTMAC andDATA versions will default to the appropriate usagemechanism as described in the following
table:

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 130

4 SupportedMechanisms

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 131

4 SupportedMechanisms

CKM_DES2_KEY_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 0

Digest size 0

Key types DES2

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 132

4 SupportedMechanisms

CKM_DES3_CBC

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 133

4 SupportedMechanisms

CKM_DES3_CBC_ENCRYPT_DATA

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 134

4 SupportedMechanisms

CKM_DES3_CBC_PAD

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 135

4 SupportedMechanisms

CKM_DES3_CBC_PAD_IPSEC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CBC_PAD_IPSEC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 136

4 SupportedMechanisms

CKM_DES3_CFB8

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 1

Key types DES3

Algorithms DES3

Modes CFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 137

4 SupportedMechanisms

CKM_DES3_CFB64

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 8

Key types DES3

Algorithms DES3

Modes CFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 138

4 SupportedMechanisms

CKM_DES3_CMAC

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable | CMAC

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 139

4 SupportedMechanisms

CKM_DES3_CTR

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CTR

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 140

4 SupportedMechanisms

CKM_DES3_ECB

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 141

4 SupportedMechanisms

CKM_DES3_ECB_ENCRYPT_DATA

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 142

4 SupportedMechanisms

CKM_DES3_GCM

Note: Our GCM is a single part operation, so even if it is called usingmulti-part API, we
accumulate the data (up to amaximum) and return data only on the “final” operation. That is the
meaning of "Accumulating" in the table, below.

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes GCM

Flags Extractable | Accumulating

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 143

4 SupportedMechanisms

CKM_DES3_KEY_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 192

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types DES3

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 144

4 SupportedMechanisms

CKM_DES3_MAC

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 145

4 SupportedMechanisms

CKM_DES3_OFB

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes OFB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 146

4 SupportedMechanisms

CKM_DES3_X919_MAC
The CKM_DES3_X919_MAC is a signature generation and verificationmechanism, as defined ANSI X9.19-1996
Financial Institution Retail Message Authentication annex 1 Cipher Block Chaining Procedure.

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable

Usage
The CKM_DES3_X919_MAC mechanism is used with theC_VerifyInit andC_SignInit functions. It has the following
attriobutes:

• Only CKK_DES2 and CKK_DES3 keys are supported.

• Themechanism takes no parameter.

• Multi-part operation is supported.

• The total input data lengthmust be at least one byte.

• The length of result is half the size of the DES block (i.e. 4 bytes).

Example
#define CKM_DES3_X919_MAC (CKM_VENDOR_DEFINED + 0x150)

CK_OBJECT_HANDLE hKey; // handle of CKK_DES2 or CKK_DES3 key
CK_MECHANISM mech = { CKM_DES3_X919_MAC , NULL, 0};
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Single-part operation

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 147

4 SupportedMechanisms

C_SignInit(hSes, &mech, hKey);
len = sizeof mac;
C_Sign(hSes, inp, sizeof inp, mac, &len);

// Multi-part operation

C_SignInit(hSes, &mech, hKey);
C_SignUpdate(hSes, inp, sizeof inp/2);
C_SignUpdate(hSes, inp+ (sizeof inp)/2, sizeof inp/2);
len = sizeof mac;
C_SignFinal(hSes, mac, &len);

// Test vectors

static const UInt8 retailKey[16] =
{

0x58, 0x91, 0x25, 0x86, 0x3D, 0x46, 0x10, 0x7F,
0x46, 0x3E, 0x52, 0x3B, 0xF7, 0x46, 0x9D, 0x52

};

static const UInt8 retailInputAscii[19] =
{

't','h','e',' ','q','u','i','c','k',' ','b','r','o','w','n',' ','f','o','x'
};

static const UInt8 retailMACAscii[4] =
{

0x55, 0xA7, 0xBF, 0xBA
};

static const UInt8 retailInputEBCDIC[19] =
{

// "the quick brown fox" in EBCDIC
0xA3, 0x88, 0x85, 0x40, 0x98, 0xA4, 0x89, 0x83,
0x92, 0x40, 0x82, 0x99, 0x96, 0xA6, 0x95, 0x40,
0x86, 0x96, 0xA7

};

static const UInt8 retailMACEBCDIC[4] =
{

0x60, 0xAE, 0x2C, 0xD7
};

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 148

4 SupportedMechanisms

CKM_DH_PKCS_DERIVE

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 512

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types DH

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 149

4 SupportedMechanisms

CKM_DH_PKCS_KEY_PAIR_GEN

Summary
FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 512

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types DH

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 150

4 SupportedMechanisms

CKM_DH_PKCS_PARAMETER_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types DH

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 151

4 SupportedMechanisms

CKM_DSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 0

Digest size 0

Key types DSA

Algorithms DSA

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 152

4 SupportedMechanisms

CKM_DSA_KEY_PAIR_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 0

Digest size 0

Key types DSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 153

4 SupportedMechanisms

CKM_DSA_PARAMETER_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 0

Digest size 0

Key types DSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 154

4 SupportedMechanisms

CKM_EC_KEY_PAIR_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 155

4 SupportedMechanisms

CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS

Summary
FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags ECC_EXTRA_BITS

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 156

4 SupportedMechanisms

CKM_ECDH1_COFACTOR_DERIVE

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 157

4 SupportedMechanisms

CKM_ECDH1_DERIVE
Elliptic Curve Diffie-Hellman is an anonymous key-agreement protocol. CKM_ECDH1_DERIVE is the derive function
for that protocol.

Note: To enhance performance, we have created a proprietary call CA_DeriveKeyAndWrap,
which is an optimization of C_DeriveKey with C_Wrap, merging the two functions into one (the
in and out constraints are the same as for the individual functions). A further optimization is
applied whenmechanism CKM_ECDH1_DERIVE is used with CA_DeriveKeyAndWrap.

If CA_DeriveKeyAndWrap is called with other mechanisms, those would not be optimized.

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 158

4 SupportedMechanisms

CKM_ECDSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms ECDSA

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 159

4 SupportedMechanisms

CKM_ECIES

Note: This is a single part operation, so even if it is called usingmulti-part API, we accumulate
the data (up to amaximum) and return data only on the “final” operation. That is themeaning of
"Accumulating" in the table, below.

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags Accumulating

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 160

4 SupportedMechanisms

CKM_ECMQV_DERIVE

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 161

4 SupportedMechanisms

CKM_EXTRACT_KEY_FROM_KEY

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 162

4 SupportedMechanisms

CKM_GENERIC_SECRET_KEY_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 163

4 SupportedMechanisms

CKM_HAS160

Summary
FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 20

Key types None

Algorithms HAS160

Modes None

Flags Extractable | Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 164

4 SupportedMechanisms

CKM_HAS160_KCDSA

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms HAS160

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 165

4 SupportedMechanisms

CKM_HAS160_KCDSA_NO_PAD

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms HAS160

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 166

4 SupportedMechanisms

CKM_HMAC_HAS160

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms HAS160

Modes HMAC

Flags Extractable | Korean | Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 167

4 SupportedMechanisms

CKM_HMAC_MD5

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 16

Key types Symmetric

Algorithms MD5

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 168

4 SupportedMechanisms

CKM_HMAC_MD5_80

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 16

Key types Symmetric

Algorithms MD5

Modes HMAC

Flags Extractable | Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 169

4 SupportedMechanisms

CKM_HMAC_RIPEMD160

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms RIPEMD160

Modes HMAC

Flags Extractable | Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 170

4 SupportedMechanisms

CKM_HMAC_SHA1

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms SHA

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 171

4 SupportedMechanisms

CKM_HMAC_SHA1_80

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms SHA

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 172

4 SupportedMechanisms

CKM_HMAC_SHA224

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 28

Key types Symmetric

Algorithms SHA224

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 173

4 SupportedMechanisms

CKM_HMAC_SHA256

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms SHA256

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 174

4 SupportedMechanisms

CKM_HMAC_SHA384

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 128

Digest size 48

Key types Symmetric

Algorithms SHA384

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 175

4 SupportedMechanisms

CKM_HMAC_SHA512

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 128

Digest size 64

Key types Symmetric

Algorithms SHA512

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 176

4 SupportedMechanisms

CKM_HMAC_SM3
SM3 is a hash function published by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash function, but
introduces additional strengthening features. For SafeNet HSMs, the available mechanisms are CKM_SM3, the hash
function, and CKM_SM3_KEY_DERIVATION, and CKM_HMAC_SM3.

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 8

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms SM3

Modes HMAC

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 177

4 SupportedMechanisms

CKM_KCDSA_KEY_PAIR_GEN

Summary
FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types KCDSA

Algorithms None

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 178

4 SupportedMechanisms

CKM_KCDSA_PARAMETER_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types KCDSA

Algorithms None

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 179

4 SupportedMechanisms

CKM_KEY_WRAP_SET_OAEP

Summary
FIPS approved? No

Supported functions Wrap | Unwrap

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 180

4 SupportedMechanisms

CKM_LOOP_BACK

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 181

4 SupportedMechanisms

CKM_LZS

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 182

4 SupportedMechanisms

CKM_MD2

Summary
FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 16

Digest size 16

Key types None

Algorithms MD2

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 183

4 SupportedMechanisms

CKM_MD2_DES_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 16

Digest size 16

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 184

4 SupportedMechanisms

CKM_MD2_KEY_DERIVATION

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 16

Digest size 16

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 185

4 SupportedMechanisms

CKM_MD5

Summary
FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 16

Key types None

Algorithms MD5

Modes None

Flags Extractable | Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 186

4 SupportedMechanisms

CKM_MD5_CAST_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 64

Digest size 16

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 187

4 SupportedMechanisms

CKM_MD5_CAST3_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 64

Digest size 16

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 188

4 SupportedMechanisms

CKM_MD5_DES_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 64

Digest size 16

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 189

4 SupportedMechanisms

CKM_MD5_KEY_DERIVATION

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 16

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 190

4 SupportedMechanisms

CKM_MD5_RSA_PKCS

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 64

Digest size 16

Key types RSA

Algorithms MD5

Modes None

Flags Extractable | Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 191

4 SupportedMechanisms

CKM_NIST_PRF_KDF

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
The CKM_NIST_PRF_KDFmechanism only supports counter mode. CKM_NIST_PRF_KDF is always allowed. It
does not matter if the “allow non-FIPS approved algorithms” HSM policy is on or off. This mechanism can only be used
with DES3_CMAC or AES_CMAC as the PRF.

The SP 800-108 allows for some variation on what/how the information is encoded and describes some fields as
optional. To accommodate that, there are two encoding schemes you can specify:

• LUNA_PRF_KDF_ENCODING_SCHEME_2: the separator byte and the length of the derived key are not encoded
in the input data for the PRF.

• LUNA_PRF_KDF_ENCODING_SCHEME_1: both fields are included.

Example
/* Parameter and values used with CKM_PRF_KDF and CKM_NIST_PRF_KDF. */
typedef CK_ULONG CK_KDF_PRF_TYPE;
typedef CK_ULONG CK_KDF_PRF_ENCODING_SCHEME;
/** PRF KDF schemes */
#define CK_NIST_PRF_KDF_DES3_CMAC 0x00000001
#define CK_NIST_PRF_KDF_AES_CMAC 0x00000002
#define CK_PRF_KDF_ARIA_CMAC 0x00000003
#define CK_PRF_KDF_SEED_CMAC 0x00000004
#define LUNA_PRF_KDF_ENCODING_SCHEME_1 0x00000000
#define LUNA_PRF_KDF_ENCODING_SCHEME_2 0x00000001
typedef struct CK_KDF_PRF_PARAMS {
CK_KDF_PRF_TYPE prfType;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 192

4 SupportedMechanisms

CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_BYTE_PTR pContext;
CK_ULONG ulContextLen;
CK_ULONG ulCounter;
CK_KDF_PRF_ENCODING_SCHEME ulEncodingScheme;
} CK_PRF_KDF_PARAMS;
typedef CK_PRF_KDF_PARAMS CK_PTR CK_KDF_PRF_PARAMS_PTR;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 193

4 SupportedMechanisms

CKM_PKCS5_PBKD2

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 8

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 194

4 SupportedMechanisms

CKM_PRF_KDF

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
The CKM_NIST_PRFmechanism only supports counter mode. CKM_PRF_KDF is only allowed when the “allow non-
FIPS approved algorithms” HSM policy is on. This mechanism can be used with DES3_CMAC, AES_CMAC, ARIA_
CMAC or SEED_CMAC as the PRF.

The SP 800-108 allows for some variation on what/how the information is encoded and describes some fields as
optional. To accommodate that, there are two encoding schemes you can specify:

• LUNA_PRF_KDF_ENCODING_SCHEME_2: the separator byte and the length of the derived key are not encoded
in the input data for the PRF.

• LUNA_PRF_KDF_ENCODING_SCHEME_1: both fields are included.

Example
/* Parameter and values used with CKM_PRF_KDF and CKM_NIST_PRF_KDF. */
typedef CK_ULONG CK_KDF_PRF_TYPE;
typedef CK_ULONG CK_KDF_PRF_ENCODING_SCHEME;
/** PRF KDF schemes */
#define CK_NIST_PRF_KDF_DES3_CMAC 0x00000001
#define CK_NIST_PRF_KDF_AES_CMAC 0x00000002
#define CK_PRF_KDF_ARIA_CMAC 0x00000003
#define CK_PRF_KDF_SEED_CMAC 0x00000004
#define LUNA_PRF_KDF_ENCODING_SCHEME_1 0x00000000
#define LUNA_PRF_KDF_ENCODING_SCHEME_2 0x00000001
typedef struct CK_KDF_PRF_PARAMS {
CK_KDF_PRF_TYPE prfType;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 195

4 SupportedMechanisms

CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_BYTE_PTR pContext;
CK_ULONG ulContextLen;
CK_ULONG ulCounter;
CK_KDF_PRF_ENCODING_SCHEME ulEncodingScheme;
} CK_PRF_KDF_PARAMS;
typedef CK_PRF_KDF_PARAMS CK_PTR CK_KDF_PRF_PARAMS_PTR;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 196

4 SupportedMechanisms

CKM_RC2_CBC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 197

4 SupportedMechanisms

CKM_RC2_CBC_PAD

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 198

4 SupportedMechanisms

CKM_RC2_ECB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 199

4 SupportedMechanisms

CKM_RC2_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 0

Digest size 0

Key types RC2

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 200

4 SupportedMechanisms

CKM_RC2_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 201

4 SupportedMechanisms

CKM_RC4

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types RC4

Algorithms RC4

Modes STREAM

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 202

4 SupportedMechanisms

CKM_RC4_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types RC4

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 203

4 SupportedMechanisms

CKM_RC5_CBC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes CBC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 204

4 SupportedMechanisms

CKM_RC5_CBC_PAD

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes CBC_PAD

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 205

4 SupportedMechanisms

CKM_RC5_ECB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes ECB

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 206

4 SupportedMechanisms

CKM_RC5_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 0

Digest size 0

Key types RC5

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 207

4 SupportedMechanisms

CKM_RC5_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes MAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 208

4 SupportedMechanisms

CKM_RIPEMD160

Summary
FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 20

Key types None

Algorithms RIPEMD160

Modes None

Flags Extractable | Internal

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 209

4 SupportedMechanisms

CKM_RSA_FIPS_186_3_AUX_PRIME_KEY_PAIR_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 210

4 SupportedMechanisms

CKM_RSA_FIPS_186_3_PRIME_KEY_PAIR_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 2048

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 211

4 SupportedMechanisms

CKM_RSA_PKCS

Summary
FIPS approved? Yes

Supported functions Sign | Verify | Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 212

4 SupportedMechanisms

CKM_RSA_PKCS_KEY_PAIR_GEN

Summary
FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 213

4 SupportedMechanisms

CKM_RSA_PKCS_OAEP
The RSA PKCS OAEP mechanism can now use a supplied hashingmechanism. Previously RSA OAEP would always
use SHA1 and returned an error if another was attempted.

With current firmware, PKCS#11 API and ckdemo now accept a new mechanism.

Allowedmechanisms are:

CKM_SHA1

CKM_SHA224

CKM_SHA256

CKM_SHA384

CKM_SHA512

0 (use the firmware's default engine, which is currently SHA1)

In ckdemomenu option 98 has a new value 17 - OAEP Hash Params, which can be set to use either default (CKM_
SHA1) or selectable. When it is set to selectable the user is prompted for a hashmechanism when using the OAEP
mechanism.

Summary
FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 214

4 SupportedMechanisms

CKM_RSA_PKCS_PSS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None | PSS

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 215

4 SupportedMechanisms

CKM_RSA_X_509

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 216

4 SupportedMechanisms

CKM_RSA_X9_31

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags Extractable | X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 217

4 SupportedMechanisms

CKM_RSA_X9_31_KEY_PAIR_GEN

Summary
FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 218

4 SupportedMechanisms

CKM_RSA_X9_31_NON_FIPS

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 219

4 SupportedMechanisms

CKM_SEED_CBC

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes CBC

Flags Extractable | Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 220

4 SupportedMechanisms

CKM_SEED_CBC_PAD

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes CBC_PAD

Flags Extractable | Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 221

4 SupportedMechanisms

CKM_SEED_CMAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes MAC

Flags Extractable | Korean | CMAC

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 222

4 SupportedMechanisms

CKM_SEED_CTR

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes CTR

Flags Extractable | Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 223

4 SupportedMechanisms

CKM_SEED_ECB

Summary
FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes ECB

Flags Extractable | Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 224

4 SupportedMechanisms

CKM_SEED_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 0

Digest size 0

Key types SEED

Algorithms None

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 225

4 SupportedMechanisms

CKM_SEED_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes MAC

Flags Extractable | Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 226

4 SupportedMechanisms

CKM_SHA_1

Summary
FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 20

Key types None

Algorithms SHA

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 227

4 SupportedMechanisms

CKM_SHA1_CAST5_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) 64

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 228

4 SupportedMechanisms

CKM_SHA1_DES2_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 229

4 SupportedMechanisms

CKM_SHA1_DES2_CBC_OLD

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 230

4 SupportedMechanisms

CKM_SHA1_DES3_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 192

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 231

4 SupportedMechanisms

CKM_SHA1_DES3_CBC_OLD

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 192

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 232

4 SupportedMechanisms

CKM_SHA1_DSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 64

Digest size 20

Key types DSA

Algorithms SHA

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 233

4 SupportedMechanisms

CKM_SHA1_ECDSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 64

Digest size 20

Key types ECDSA

Algorithms SHA

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 234

4 SupportedMechanisms

CKM_SHA1_KCDSA

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms SHA

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 235

4 SupportedMechanisms

CKM_SHA1_KCDSA_NO_PAD

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms SHA

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 236

4 SupportedMechanisms

CKM_SHA1_KEY_DERIVATION

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 237

4 SupportedMechanisms

CKM_SHA1_RC2_40_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 40

Minimum key length for FIPS use (bits) 40

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 40

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 238

4 SupportedMechanisms

CKM_SHA1_RC2_128_CBC

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 239

4 SupportedMechanisms

CKM_SHA1_RC4_40

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 40

Minimum key length for FIPS use (bits) 40

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 40

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 240

4 SupportedMechanisms

CKM_SHA1_RC4_128

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 241

4 SupportedMechanisms

CKM_SHA1_RSA_PKCS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 242

4 SupportedMechanisms

CKM_SHA1_RSA_PKCS_PSS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable | PSS

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 243

4 SupportedMechanisms

CKM_SHA1_RSA_X9_31

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable | X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 244

4 SupportedMechanisms

CKM_SHA1_RSA_X9_31_NON_FIPS

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 245

4 SupportedMechanisms

CKM_SHA224

Summary
FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 28

Key types None

Algorithms SHA224

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 246

4 SupportedMechanisms

CKM_SHA224_DSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 64

Digest size 28

Key types DSA

Algorithms SHA224

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 247

4 SupportedMechanisms

CKM_SHA224_ECDSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 64

Digest size 28

Key types ECDSA

Algorithms SHA224

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 248

4 SupportedMechanisms

CKM_SHA224_KCDSA

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 28

Key types KCDSA

Algorithms SHA224

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 249

4 SupportedMechanisms

CKM_SHA224_KCDSA_NO_PAD

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 28

Key types KCDSA

Algorithms SHA224

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 250

4 SupportedMechanisms

CKM_SHA224_KEY_DERIVATION

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 28

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 251

4 SupportedMechanisms

CKM_SHA224_RSA_PKCS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 252

4 SupportedMechanisms

CKM_SHA224_RSA_PKCS_PSS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable | PSS

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 253

4 SupportedMechanisms

CKM_SHA224_RSA_X9_31

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable | X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 254

4 SupportedMechanisms

CKM_SHA224_RSA_X9_31_NON_FIPS

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 255

4 SupportedMechanisms

CKM_SHA256

Summary
FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 32

Key types None

Algorithms SHA256

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 256

4 SupportedMechanisms

CKM_SHA256_DSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 64

Digest size 32

Key types DSA

Algorithms SHA256

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 257

4 SupportedMechanisms

CKM_SHA256_ECDSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 64

Digest size 32

Key types ECDSA

Algorithms SHA256

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 258

4 SupportedMechanisms

CKM_SHA256_ECDSA_GBCS
GBCS is the Great Britain Companion Specification, a component of the Smart Metering Equipment Technical
Specification, in support of the Smart Metering Programme. SHA256withECDSAGBCS is a proprietary ECDSA
signature algorithm defined by the GBCS standard. It does not appear to be congruent with any of the other
Deterministic ECDSA algorithms available in the various published RFCs (at time of writing this comment). As well (at
time of writing) this algorithm is currently not FIPS compliant. SHA256withECDSAGBCS was implemented
specifically for GBCS integration. If you need to be compliant with GBCS then youmust use
SHA256withECDSAGBCS.

Otherwise, SHA256withECDSA is the standard ECDSA algorithm defined by most other standards (for example FIPS,
X9).

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 256

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 64

Digest size 32

Key types ECDSA

Algorithms SHA256

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 259

4 SupportedMechanisms

CKM_SHA256_KCDSA

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 32

Key types KCDSA

Algorithms SHA256

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 260

4 SupportedMechanisms

CKM_SHA256_KCDSA_NO_PAD

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 32

Key types KCDSA

Algorithms SHA256

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 261

4 SupportedMechanisms

CKM_SHA256_KEY_DERIVATION

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 262

4 SupportedMechanisms

CKM_SHA256_RSA_PKCS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 263

4 SupportedMechanisms

CKM_SHA256_RSA_PKCS_PSS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable | PSS

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 264

4 SupportedMechanisms

CKM_SHA256_RSA_X9_31

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable | X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 265

4 SupportedMechanisms

CKM_SHA256_RSA_X9_31_NON_FIPS

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 266

4 SupportedMechanisms

CKM_SHA384

Summary
FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 128

Digest size 48

Key types None

Algorithms SHA384

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 267

4 SupportedMechanisms

CKM_SHA384_ECDSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 128

Digest size 48

Key types ECDSA

Algorithms SHA384

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 268

4 SupportedMechanisms

CKM_SHA384_KCDSA

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size 48

Key types KCDSA

Algorithms SHA384

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 269

4 SupportedMechanisms

CKM_SHA384_KCDSA_NO_PAD

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size 48

Key types KCDSA

Algorithms SHA384

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 270

4 SupportedMechanisms

CKM_SHA384_KEY_DERIVATION

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 128

Digest size 48

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 271

4 SupportedMechanisms

CKM_SHA384_RSA_PKCS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 272

4 SupportedMechanisms

CKM_SHA384_RSA_PKCS_PSS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable | PSS

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 273

4 SupportedMechanisms

CKM_SHA384_RSA_X9_31

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable | X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 274

4 SupportedMechanisms

CKM_SHA384_RSA_X9_31_NON_FIPS

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 275

4 SupportedMechanisms

CKM_SHA512

Summary
FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 128

Digest size 64

Key types None

Algorithms SHA512

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 276

4 SupportedMechanisms

CKM_SHA512_ECDSA

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 128

Digest size 64

Key types ECDSA

Algorithms SHA512

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 277

4 SupportedMechanisms

CKM_SHA512_KCDSA

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size 64

Key types KCDSA

Algorithms SHA512

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 278

4 SupportedMechanisms

CKM_SHA512_KCDSA_NO_PAD

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 1024

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size 64

Key types KCDSA

Algorithms SHA512

Modes None

Flags Korean

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 279

4 SupportedMechanisms

CKM_SHA512_KEY_DERIVATION

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 128

Digest size 64

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 280

4 SupportedMechanisms

CKM_SHA512_RSA_PKCS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 64

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 281

4 SupportedMechanisms

CKM_SHA512_RSA_PKCS_PSS

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 64

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable | PSS

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 282

4 SupportedMechanisms

CKM_SHA512_RSA_X9_31

Summary
FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 64

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable | X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 283

4 SupportedMechanisms

CKM_SHA512_RSA_X9_31_NON_FIPS

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 128

Digest size 64

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 284

4 SupportedMechanisms

CKM_SM3
SM3 is a hash function published by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash function, but
introduces additional strengthening features. For SafeNet HSMs, the available mechanisms are CKM_SM3, the hash
function, and CKM_SM3_KEY_DERIVATION, and CKM_HMAC_SM3.

Summary
FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 32

Key types None

Algorithms SM3

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 285

4 SupportedMechanisms

CKM_SM3_KEY_DERIVATION
SM3 is a hash function published by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash function, but
introduces additional strengthening features. For SafeNet HSMs, the available mechanisms are CKM_SM3, the hash
function, and CKM_SM3_KEY_DERIVATION, and CKM_HMAC_SM3.

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 8

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 286

4 SupportedMechanisms

CKM_SSL3_KEY_AND_MAC_DERIVE

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 384

Minimum key length for FIPS use (bits) 384

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 384

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 287

4 SupportedMechanisms

CKM_SSL3_MASTER_KEY_DERIVE

Summary
FIPS approved? No

Supported functions Derive

Minimum key length (bits) 384

Minimum key length for FIPS use (bits) 384

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 384

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 288

4 SupportedMechanisms

CKM_SSL3_MD5_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 128

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 16

Key types Symmetric

Algorithms MD5

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 289

4 SupportedMechanisms

CKM_SSL3_PRE_MASTER_KEY_GEN

Summary
FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 384

Minimum key length for FIPS use (bits) 384

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 384

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 290

4 SupportedMechanisms

CKM_SSL3_SHA1_MAC

Summary
FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 160

Minimum key length for FIPS use (bits) 160

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 160

Block size 64

Digest size 20

Key types Symmetric

Algorithms SHA

Modes HMAC

Flags Extractable

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 291

4 SupportedMechanisms

CKM_UNKNOWN

Summary
FIPS approved? No

Supported functions None

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) 0

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags Not Listed

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 292

4 SupportedMechanisms

CKM_X9_42_DH_DERIVE

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 293

4 SupportedMechanisms

CKM_X9_42_DH_HYBRID_DERIVE

Summary
FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 294

4 SupportedMechanisms

CKM_X9_42_DH_KEY_PAIR_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 295

4 SupportedMechanisms

CKM_X9_42_DH_PARAMETER_GEN

Summary
FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 296

5
Using the SafeNet SDK

This chapter describes how to use the SDK to develop applications that exercise the HSM. It contains the following
topics:

• "Libraries and Applications" below

• "Application IDs" on page 299

• "NamedCurves and User-Defined Parameters" on page 302

• "Curve Names By Organization" on page 310

• "Capability and Policy Configuration Control Using the SafeNet API" on page 311

• "Connection Timeout" on page 315

Libraries and Applications
This section explains how tomake the Chrystoki library available to the other components of the SafeNet Software
Development Kit.

An application has no knowledge of which library is to be loaded nor does the application know the library's location.
For these reasons, a special schememust be employed to tell the application, while it is running, where to find the
library. The next paragraphs describe how applications connect to Chrystoki.

SafeNet SDK Applications General Information
All applications provided in SafeNet Network HSM Software Development Kit have been compiled with a component
called CkBridge, which uses a configuration file to find the library it is intended to load. Ckbridge first uses the
environment variable "ChrystokiConfigurationPath" to locate the corresponding configuration file. If this environment
variable is not set, it attempts to locate the configuration file in a default location depending on the product platform (/etc
on Unix, and c:\Program Files\SafeNet\LunaClient onWindows).

Configuration files differ from one platform to the next - refer to the appropriate sub-section for the operating system and
syntax applicable to your development platform.

Windows
InWindows, an initialization file called crystoki.ini specifies which library is to be loaded. The syntax of this file is
standard toWindows.

The following example shows proper configuration files forWindows:
[Chrystoki2]
LibNT=C:\Program Files\SafeNet\LunaClient\cryptoki.dll
[LunaSA Client]
SSLConfigFile=C:\Program Files\SafeNet\LunaClient\openssl.cnf
ReceiveTimeout=20000
NetClient=1
ServerCAFile=C:\Program Files\SafeNet\LunaClient\cert\server\CAFile.pem

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 297

5 Using the SafeNet SDK

ClientCertFile=C:\Program Files\SafeNet\LunaClient\cert\client\ClientNameCert.pem
ClientPrivKeyFile=C:\Program Files\SafeNet\LunaClient\cert\client\ClientNameKey.pem
[Luna]
DefaultTimeOut=500000
PEDTimeout1=100000
PEDTimeout2=200000
PEDTimeout3=10000
[CardReader]
RemoteCommand=1

CAUTION: NEVER insert TAB characters into the crystoki.ini (Windows) or chrystoki.conf
(UNIX) file.

UNIX
In UNIX, a configuration file called "Chrystoki.conf" is used to guide CkBridge in finding the appropriate library.

The configuration file is a regular text file with a special format. It is made up of a number of sections, each section
containing one or multiple entries. The following example shows a typical UNIX configuration file:
Chrystoki2 = {
LibUNIX=/usr/lib/libCryptoki2.so;
}
Luna = {
DefaultTimeOut=500000;
PEDTimeout1=100000;
PEDTimeout2=200000;
PEDTimeout3=10000;
KeypairGenTimeOut=2700000;
CloningCommandTimeOut=300000;
}
CardReader = {
RemoteCommand=1;
}
LunaSA Client = {
NetClient = 1;
ServerCAFile = /usr/safenet/lunaclient/cert/server/CAFile.pem;
ClientCertFile = /usr/safenet/lunaclient/cert/client/ClientNameCert.pem;
ClientPrivKeyFile = /usr/safenet/lunaclient/cert/client/ClientNameKey.pem;
SSLConfigFile = /usr/safenet/lunaclient/bin/openssl.cnf;
ReceiveTimeout = 20000;
}

The shared object "libcrystoki2.so" is a library supporting version 2.2.0 of the PKCS#11 standard.

CAUTION: NEVER insert TAB characters into the chrystoki.ini (Windows) or crystoki.conf
(UNIX) file.

Compiler Tools
Tools used for SafeNet development are platform specific tools/development environments, where applicable (e.g.,
Visual C++ onWindows 2008 andWindows 2012, orWorkshop on Solaris, or aCC onHP-UX). Current version
information is provided in the Customer Release Notes.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 298

5 Using the SafeNet SDK

Note: Contact SafeNet for information about the availability of newer versions of compilers.

The Applications
See the "About the Utilities ReferenceGuide" on page 1 for information about individual tools and utilities, provided for
use with SafeNet HSMs.

Application IDs
Within Chrystoki, each application has an application ID, a 64-bit integer, normally specified in two 32-bit parts. When
an application invokes C_Initialize, the Chrystoki library automatically generates a default application ID. The default
value is based on the application's process ID, so different applications will always have different application IDs. The
application ID is also associated with each session created by the application.

Shared Login State and Application IDs
PKCS#11 specifies that sessions within an application (a single address space and all threads that execute within it)
share a login state, meaning that if one session is logged in, all are logged in. If one logs out, all are logged out. Thus, if
process A spawns multiple threads, and all of those threads open sessions on Token #1, then all of those sessions
share a login state. If process B also has sessions open on Token #1, they are independent from the sessions of
process A. The login state of process B sessions does not affect process A sessions, unless they conflict with one
another (e.g. process A logs in as USER when process B is already logged in as SO).

Within Chrystoki and SafeNet tokens, login states are shared by sessions with the same application ID. This means
that sessions within an application share a login state, but sessions across separate applications do not. However,
Chrystoki does provides functionality allowing applications to alter their application IDs, so that separate applications
can share a login state.

CAUTION: The ability to share login states through the use of application IDs is a legacy
feature. It can eliminate the need for repeated PED authentication across multiple applications,
but this is not ideal for security reasons. To avoid these risks, it is recommended to use auto-
activation in conjunction with a PED challenge password instead (see "About Activation and
Auto-Activation " on page 1 in theAdministration Guide).

To change application IDs manually using the LunaCM appid command, see "appid" on page 1 in the LunaCM
ReferenceGuide.

Why Share Login State Between Applications?
Formost applications, this is unnecessary. If an application consists of a single perpetual process, unshared session
states are sufficient. If the application supports multiple, separately-validated processes, unshared session states are
also sufficient. Generally, applications that validate (login) separately aremore secure.

It is only necessary to share login state between processes if all of the following conditions are true:

• the application designer wants to require only one login action by the user

• the application consists of multiple processes, each with their own sessions

• the system uses SafeNet CA3 tokens

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 299

5 Using the SafeNet SDK

The SafeNet CA3 token provides FIPS 140-1 level 3 security by using a separate port for password entry (where PINs
take the form of special data keys). Use of these keys prevents an application from caching a password and using it to
log in with multiple sessions. To log in to separate processes simultaneously, login state between those processes
must be shared.

Login State Sharing Overview
The simplest form of the Chrystoki state-sharing functionality is theCA_SetApplicationID function. This function
should be invoked afterC_Initialize, but before any sessions are opened. Two separate applications can use this
function to set their application IDs to the same value, and thus allow them to share login states between their
sessions.

Alternatively, set theAppIdMajor andAppIdMinor fields in theMisc section of the Chrystoki configuration file. This
causes default application IDs for all applications to be generated from these fields, rather than from each application's
process ID. When these fields are set, all applications on a host system will share login state between their sessions,
unless individual applications use theCA_SetApplicationID function.

Example
A sample configuration file (crystoki.ini forWindows) using explicit application IDs is duplicated here:
[Chrystoki2]
LibNT=D:\Program Files\SafeNet\LunaClient\cryptoki.dl
[Luna]
DefaultTimeOut=500000
PEDTimeout1=100000
PEDTimeout2=200000
[CardReader]
RemoteCommand=1
[Misc]
AppIdMajor=2
AppIdMinor=4

Problems may still arise. When all sessions of a particular application ID are closed, that application ID reverts to a
dormant state. When another session for that application ID is created, the application ID is recreated, but always in the
logged-out state, regardless of the state it was in when it went dormant.

For example, consider an application where a parent process sets its application ID, opens a session, logs the session
in, then closes the session and terminates. Several child processes then set their application IDs, open sessions and
try to use them. However, since the application ID went dormant when the parent process closed its session, the child
processes find their sessions logged out. The logged-in state of the parent process's session was lost when it closed
its session.

TheCA_OpenApplicationID function can ensure that the login state of an application ID is maintained, even when no
sessions belonging to that application ID exist. WhenCA_OpenApplicationID is invoked, the application ID is tagged
so that it never goes dormant, even if no open sessions exist.

Note: RunningCA_OpenApplication_ID does not set the application ID for the current
process. Youmust first explicitly runCA_SetApplicationID to do this.

Login State Sharing Functions
Use the following functions to configure andmanage login state sharing:

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 300

5 Using the SafeNet SDK

CA_SetApplicationID
CK_RV CK_ENTRY CA_SetApplicationID(

CK_ULONG ulHigh,
CK_ULONG ulLow

);

TheCA_SetApplicationID function allows an application to set its own application ID, rather than letting the
application ID be generated automatically from the application's process ID. CA_SetApplicationID should be invoked
afterC_Initialize, but before any sessionmanipulation functions are invoked. If CA_SetApplicationID is invoked after
sessions have been opened, results will be unpredictable.

CA_SetApplicationID always returns CKR_OK.

CA_OpenApplicationID
CK_RV CK_ENTRY CA_OpenApplicationID(

CK_SLOT_ID slotID,
CK_ULONG ulHigh,
CK_ULONG ulLow

);

TheCA_OpenApplicationID function forces a given application ID on a given token to remain active, even when all
sessions belonging to the application ID have been closed. Normally, an application ID on a token goes dormant when
the last session that belongs to the application ID is closed. When an application ID goes dormant, login state is lost,
so when a new session is created within the application ID, it starts in the logged-out state. However, if CA_
OpenApplicationID is used, the application ID is prevented from going dormant, so login state is maintained even
when all sessions for an application ID are closed.

Note: RunningCA_OpenApplication_ID does not set the application ID for the current
process. Youmust first explicitly runCA_SetApplicationID to do this.

CA_OpenApplicationID can return CKR_SLOT_ID_INVALID or CKR_TOKEN_NOT_PRESENT.

CA_CloseApplicationID
CK_RV CK_ENTRY CA_CloseApplicationID(

CK_SLOT_ID slotID,
CK_ULONG ulHigh,
CK_ULONG ulLow

);

TheCA_CloseApplicationID function removes the property of an application ID that prevents it from going dormant.
CA_CloseApplicationID also closes any open sessions owned by the given application ID. Thus, whenCA_
CloseApplicationID returns, all open sessions owned by the given application ID have been closed and the
application ID has gone dormant.

CA_CloseApplicationID can return CKR_SLOT_ID_INVALID or CKR_TOKEN_NOT_PRESENT.

Application ID Examples
The following code fragments show how two separate applications might share a single application ID:
app 1: app 2:
C_Initialize()
CA_SetApplicationID(3,4)
C_OpenSession()
C_Login()

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 301

5 Using the SafeNet SDK

C_Initialize()
CA_SetApplicationID(3,4)
C_OpenSession()
C_GetSessionInfo()
// Session info shows session
// already logged in.
<perform work, no login
necessary>

C_Logout()
C_GetSessionInfo()
// Session info shows session
// logged out.

C_CloseSession()
C_CloseSession()

C_Finalize()
C_Finalize()

The following code fragments show how one process might login for others:

Setup app:
C_Initialize()
CA_SetApplicationID(7,9)
CA_OpenApplicationID(slot,7,9)
C_OpenSession(slot)
C_Login()
C_CloseSession()

Spawnmany child applications:
C_Finalize()

Terminate each child app:
C_Initialize()
CA_SetApplicationID(7,9)
C_OpenSession(slot)
<perform work, no login necessary>

Takedown app:

Terminate child applications:
C_CloseSession()
C_Finalize()

C_Initialize()
CA_CloseApplicationID(slot,7,9)
C_Finalize()

Named Curves and User-Defined Parameters
The SafeNet HSM is a PKCS#11 oriented device. Prior to firmware 4.6.7, the HSM firmware statically defined the
NIST named curve OIDs and curve parameters. To expand on that capability and add flexibility, firmware 4.6.7
(SafeNet Network HSM 4.3) and later added support for Brainpool curve OIDs and curve parameters. Additional
support was added to decode the ecParameters structure and use that data in the generation of keys as well as in
signing and verification.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 302

5 Using the SafeNet SDK

Curve Validation Limitations
The HSM can validate the curve parameters, however domain parameter validation guarantees only the
consistency/sanity of the parameters and themost basic, well-known security properties. The HSM has no way of
judging the quality of a user-specified curve.

It is therefore important that you perform Known Answer Tests to verify the operation of the HSM for any new Domain
Parameter.set. Tomaintain NIST-FIPS compatibility the feature is selectively enabled with the feature being disabled
by default. Therefore the Administrator must ‘opt-in’ by actively choosing to enable the appropriate HSM policy. Among
other effects, this causes the HSM to display a shell/console message to the effect that the HSM is not operating in
FIPS mode.

Storing Domain Parameters
Under PKCS#11 v2.20, Domain Parameters are stored in object attribute CKA_EC_PARAMS. The value of this
parameter is the DER encoding of an ANSI X9.62 Parameters value.
Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES.&id({CurveNames}),
implicitlyCA NULL
}

Because PKCS#11 states that the implicitlyCA is not supported by cryptoki, therefore the CKA_EC_PARAMS
attributemust contain the encoding of an ecParameters or a namedCurve. Cryptoki holds ECC key pairs in separate
Private and Public key objects. Each object has its ownCKA_EC_PARAMS attribute whichmust be provided when
the object is created and cannot be subsequently changed.

Cryptoki also supports CKO_DOMAIN_PARAMETERS objects. These store Domain Parameters but perform no
cryptographic operations. A Domain Parameters object is really only for storage. To generate a key pair, youmust
extract the attributes from the Domain Parameters object and insert them in the CKA_EC_PARAMS attribute of the
Public key template. Cryptoki can create new ECC Public and Private key objects and Domain Parameters objects in
the following ways:

• Objects can be directly stored using the C_CreateObject command

• Public and private key objects can be generated internally with the C_GenerateKeyPair command and the CKM_
EC_KEY_PAIR_GEN mechanism.

• Objects can be imported in encrypted form using C_UnwrapKey command.

Using Domain Parameters
ECC keys may be used for Signature Generation and Verification with the CKM_ECDSA and CKM_ECDSA_SHA1
mechanism and Encryption and Decryption with the CKM_ECIES mechanism. These threemechanism are enhanced
so that they fetch the Domain Parameters from the CKA_EC_PARAMS attribute for both ecParameters and
namedCurve choice and not just namedCurve choice.

User Friendly Encoder
Using ECC with Cryptoki to create or generate ECC keys requires that the CKA_EC_PARAMS attribute be specified.
This is a DER encoded binary array. Usually in public documents describing ECC curves the Domain Parameters are
specified as a series of printable strings so the programmer faces the problem of converting these to the correct format
for Cryptoki use.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 303

5 Using the SafeNet SDK

The cryptoki library is extended to support functions called CA_EncodeECPrimeParams and CA_
EncodeECChar2Params which allow an application to specify the parameter details of a new curve. These functions
implement DER encoders to build the CKA_EC_PARAMS attribute from large integer presentations of the Domain
Parameter values.

Refer to "Sample Domain Parameter Files " on page 306 for some sample Domain Parameter files.

Application Interfaces

CA_EncodeECPrimeParams
#include “cryptoki.h”

CK_RV CA_ EncodeECPrimeParams (

CK_BYTE_PTR DerECParams, CK_ULONG_PTR DerECParams Len

CK_BYTE_PTR prime, CK_USHORT primelen,

CK_BYTE_PTR a, CK_USHORT alen,

CK_BYTE_PTR b, CK_USHORT blen,

CK_BYTE_PTR seed, CK_USHORT seedlen,

CK_BYTE_PTR x, CK_USHORT xlen,

CK_BYTE_PTR y, CK_USHORT ylen,

CK_BYTE_PTR order, CK_USHORT orderlen,

CK_BYTE_PTR cofactor, CK_USHORT cofactorlen,

);

Do DER enc of ECC Domain Parameters Prime

Parameters

DerECParams Resultant Encoding (length prediction supported if NULL).

DerECParamsLen Buffer len/Length of resultant encoding

prime Primemodulus

primelen Primemodulus len

a Elliptic Curve coefficient a

alen Elliptic Curve coefficient a length

b Elliptic Curve coefficient b

blen Elliptic Curve coefficient b length

seed Seed (optional may be NULL)

seedlen Seed length

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 304

5 Using the SafeNet SDK

x Elliptic Curve point X coord

xlen Elliptic Curve point X coord length

y Elliptic Curve point Y coord

ylen Elliptic Curve point Y coord length

order Order n of the Base Point

orderlen Order n of the Base Point length

cofactor The integer h = #E(Fq)/n (optional)

cofactorlen h length

Return Status of operation. CKR_OK if ok.

CA_EncodeECChar2Params
#include “cryptoki.h”

CK_RV CA_EncodeECChar2Params(

 CK_BYTE_PTR DerECParams, CK_ULONG_PTR DerECParams Len

 CK_USHORTm,

CK_USHORT k1,

CK_USHORT k2,

 CK_USHORT k3,

 CK_BYTE_PTR a, CK_USHORT alen,

CK_BYTE_PTR b, CK_USHORT blen,

 CK_BYTE_PTR seed, CK_USHORT seedlen,

CK_BYTE_PTR x, CK_USHORT xlen,

 CK_BYTE_PTR y, CK_USHORT ylen,

 CK_BYTE_PTR order, CK_USHORT orderlen,

 CK_BYTE_PTR cofactor, CK_USHORT cofactorlen,

);

Do DER enc of ECC Domain Parameters 2^M

Parameters

DerECParams Resultant Encoding (length prediction supported if NULL).

DerECParamsLen Buffer len/Length of resultant encoding

M Degree of field

k1 parameter in trinomial or pentanomial basis polynomial

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 305

5 Using the SafeNet SDK

k2 parameter in pentanomial basis polynomial

k3 parameter in pentanomial basis polynomial

a Elliptic Curve coefficient a

alen Elliptic Curve coefficient a length

b Elliptic Curve coefficient b

blen Elliptic Curve coefficient b length

seed Seed (optional may be NULL)

seedlen Seed length

x Elliptic Curve point X coord

xlen Elliptic Curve point X coord length

y Elliptic Curve point Y coord

ylen Elliptic Curve point Y coord length

order Order n of the Base Point

orderlen Order n of the Base Point length

cofactor The integer h = #E(Fq)/n (optional)

cofactorlen h length

Return Status of operation. CKR_OK if ok.

Sample Domain Parameter Files
The following examples show some sample domain parameter files.

prime192v1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 306

5 Using the SafeNet SDK

#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#

C2tnB191v1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#
These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 307

5 Using the SafeNet SDK

brainpoolP160r1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#

brainpoolP512r1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 308

5 Using the SafeNet SDK

#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#

Bad Parameter File
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 309

5 Using the SafeNet SDK

Curve Names By Organization
Elliptic curves are widely used, despite being defined and described differently by different groups in the cryptographic
world. The following table attempts to reconcile curve names across three different standards organizations, the SEC
Group, ANSI, and NIST.

SECG ANSI X9.62 NIST

 sect163k1 NIST K-163

 sect163r1

 sect163r2 NIST B-163

 sect193r1

 sect193r2

 sect233k1 NIST K-233

 sect233r1 NIST B-233

 sect239k1

 sect283k1 NIST K-283

 sect283r1 NIST B-283

 sect409k1 NIST K-409

 sect409r1 NIST B-409

 sect571k1 NIST K-571

 sect571r1 NIST B-571

 secp160k1

 secp160r1

 secp160r2

Table 1: Equivalent curves defined by standards organizations

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 310

5 Using the SafeNet SDK

SECG ANSI X9.62 NIST

 secp192k1

 secp192r1 prime192v1 NIST P-192

 secp224k1

 secp224r1 NIST P-224

 secp256k1

 secp256r1 prime256v1 NIST P-256

 secp256r1 NIST P-384

 secp521r1 NIST P-521

For additional information about the Elliptic Curve specification, see this article:

http://www.ietf.org/rfc/rfc4492.txt

Capability and Policy Configuration Control Using the
SafeNet API
The configuration and control of the SafeNet HSM is provided by a set of capabilities and policies which you can query
and set using the SafeNet API. See for more information.

HSM Capabilities and Policies
Each HSM has a set of capabilities. An HSM's capability set defines and controls the behaviour of the HSM.

HSM behaviour can be further modified through changing policies. The HSM Admin can refine the behaviour of an HSM
by changing the policy settings.

HSM Partition Capabilities and Policies
Each HSM can support one-or-more virtual HSMs called HSM Partitions (may also be called “containers” in some areas
of the API), which are used by properly authenticated remote clients to perform cryptographic operations.

Each HSM Partition has a set of capabilities. An HSM Partition's capability set defines and controls the behaviour of
the HSM partition.

HSM Partition behaviour can be further modified through changing policies. The HSM Admin can refine the behaviour of
an HSM Partition by changing the policy settings. Different Partitions can have different values for the configuration
elements which apply to specific HSM Partitions – in other words, if a Policy is set to a given value for one HSM
Partition, the Policy can be set to a different value for another HSM Partitition on the sameHSM.

In some cases, a Partition policy change is destructive.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 311

http://www.ietf.org/rfc/rfc4492.txt

5 Using the SafeNet SDK

Policy Refinement
For every policy set element, there is a corresponding capability set element (the reverse is not true – there can be
some capability set elements that do not have corresponding policy set elements). The value of a policy set element
can bemodified by the HSM Admin, but only within the limitations imposed by the corresponding capability set
element.

For example, there is a policy set element which determines how many failed login attempts may bemade before a
Partition is deleted or locked out. There is also a corresponding capability set element for the same purpose. The policy
element may bemodified by the HSM Admin, but may only be set to a value less than or equal to that of the capability
set element. So if the capability set element has a value of 10, the HSM Admin can set the policy to a value less than or
equal to 10.

In general, the HSM Adminmay modify policy set elements tomake the HSM or Partition policy more restrictive than
that imposed by the capability set elements. The HSM Admin can not make the HSM or HSM Partition policy less
restrictive or enable functionality that is disabled through capability settings.

Policy Types
There are three types of policy elements, as follows:

Normal
policy
elements

May be set at any time by the HSM Admin. The values whichmay be set are limited only by the
corresponding capability element as described in the previous section (i.e. the policy element can be
set only to a value less than or equal to the capability set element).

Destructive
policy
elements

May be set at any time, but setting them results in the erasure of any Partitions and their contents.
Policy elements are destructive if changing them significantly affects the security policy of the HSM.

Write-
restricted
policy
elements

Cannot bemodified directly, but instead are affected by other actions that can be taken.

Querying and Modifying HSM Configuration
The following are the relevant functions (found in sfnt_extensions.h):

• CK_RV CK_ENTRY CA_GetConfigurationElementDescription(

• CK_SLOT_ID slotID,

• CK_ULONG ulIsContainerElement,

• CK_ULONG ulIsCapabilityElement,

• CK_ULONG ulElementId,

• CK_ULONG_PTR pulElementBitLength,

• CK_ULONG_PTR pulElementDestructive,

• CK_ULONG_PTR pulElementWriteRestricted,

• CK_CHAR_PTR pDescription);

• CK_RV CK_ENTRY CA_GetHSMCapabilitySet(

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 312

5 Using the SafeNet SDK

• CK_SLOT_ID uPhysicalSlot,

• CK_ULONG_PTR pulCapIdArray,

• CK_ULONG_PTR pulCapIdSize,

• CK_ULONG_PTR pulCapValArray,

• CK_ULONG_PTR pulCapValSize);

• CK_RV CK_ENTRY CA_GetHSMCapabilitySetting (

• CK_SLOT_ID slotID,

• CK_ULONG ulPolicyId,

• CK_ULONG_PTR pulPolicyValue);

• CK_RV CK_ENTRY CA_GetHSMPolicySet(

• CK_SLOT_ID uPhysicalSlot,

• CK_ULONG_PTR pulPolicyIdArray,

• CK_ULONG_PTR pulPolicyIdSize,

• CK_ULONG_PTR pulPolicyValArray,

• CK_ULONG_PTR pulPolicyValSize);

• CK_RV CK_ENTRY CA_GetHSMPolicySetting (

• CK_SLOT_ID slotID,

• CK_ULONG ulPolicyId,

• CK_ULONG_PTR pulPolicyValue);

• CK_RV CK_ENTRY CA_GetContainerCapabilitySet(

• CK_SLOT_ID uPhysicalSlot,

• CK_ULONG ulContainerNumber,

• CK_ULONG_PTR pulCapIdArray,

• CK_ULONG_PTR pulCapIdSize,

• CK_ULONG_PTR pulCapValArray,

• CK_ULONG_PTR pulCapValSize);

• CK_RV CK_ENTRY CA_GetContainerCapabilitySetting (

• CK_SLOT_ID slotID,

• CK_ULONG ulContainerNumber,

• CK_ULONG ulPolicyId,

• CK_ULONG_PTR pulPolicyValue);

• CK_RV CK_ENTRY CA_GetContainerPolicySet(

• CK_SLOT_ID uPhysicalSlot,

• CK_ULONG ulContainerNumber,

• CK_ULONG_PTR pulPolicyIdArray,

• CK_ULONG_PTR pulPolicyIdSize,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 313

5 Using the SafeNet SDK

• CK_ULONG_PTR pulPolicyValArray,

• CK_ULONG_PTR pulPolicyValSize);

• CK_RV CK_ENTRY CA_GetContainerPolicySetting(

• CK_SLOT_ID uPhysicalSlot,

• CK_ULONG ulContainerNumber,

• CK_ULONG ulPolicyId,

• CK_ULONG_PTR pulPolicyValue);

• CK_RV CK_ENTRY CA_SetHSMPolicy (

• CK_SESSION_HANDLE hSession,

• CK_ULONG ulPolicyId,

• CK_ULONG ulPolicyValue);

• CK_RV CK_ENTRY CA_SetDestructiveHSMPolicy (

• CK_SESSION_HANDLE hSession,

• CK_ULONG ulPolicyId,

• CK_ULONG ulPolicyValue);

• CK_RV CK_ENTRY CA_SetContainerPolicy (

• CK_SESSION_HANDLE hSession,

• CK_ULONG ulContainer,

• CK_ULONG ulPolicyId,

• CK_ULONG ulPolicyValue);

The CA_GetConfigurationElementDescription() Function
TheCA_GetConfigurationElementDescription() function requires that you pass in a zero or one value to indicate
whether the element you are querying is an HSM Partition (container) element or an HSM element, and another
zero/one value to define whether it is a capability or policy that you are interested in. You also pass in the id of the
element and a character buffer of at least 60 characters. The function then returns the size of the element value (in bits),
an indication of whether the element is destructive, an indication of whether the policy (if it is a policy) is write-
restricted, and it also writes the description string into the buffer that you provided.

The CA_Get{HSM|Container}{Capability|Policy}Set() Functions
The various CA_Get{HSM|Container}{Capability|Policy}Set() functions all return (in the word arrays provided) a
complete list of element id/value pairs for the set specified. For example, CA_GetHSMCapabilitySet() returns a list of
all HSM capability elements and their values. The parameters for these functions include a list pointer and length
pointer for each of the element ids and element values. On calling the function, you should provide a buffer or a null
pointer for each of the lists, and the length value should be initialized to the size of the buffer. On return, the buffer (if
given) is populated, and the length is updated to the real length of the list. If the buffer is given but is not large enough,
an error results.

Typically you would invoke the function twice: call the function the first time with null buffer pointers so that the real
length necessary is returned, then allocate the necessary buffers and call the function a second time, giving the real
buffers.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 314

5 Using the SafeNet SDK

The various CA_Get{HSM|Container}{Capability|Policy}Setting() functions allow you to query a specific element
value. Provide the element id and the function returns the value.

The CA_Set...() Functions
The various CA_Set...() functions allow you to set individual HSM andHSM Partition policies. There are two varieties
for setting HSM policies, because changing the value of a destructive HSM policy results in the HSM being cleared of
any Partitions and their contents. Tomake it clear when this is going to happen, the appropriate set functionmust be
called based on whether the HSM policy is destructive or not (which you can determine with theCA_
GetConfigurationElementDescription() function).

Connection Timeout
The connection timeout is not configurable.

Linux and Unix Connection Timeout
OnUnix platforms, the client performs a "connect" on the socket. If the socket is busy or unavailable, the client
performs a "select" on the socket with the timeout set to 10 seconds (hardcoded). If the "select" call returns before the
timeout, then the client is able to connect. If not then it fails. This prevents the situation where someUnix operating
systems can block for several minutes when SafeNet Network HSM is unavailable.

Windows Connection Timeout
OnWindows platforms, "connect" is called without "select", relying upon the default Windows timeout of approximately
20 seconds.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 315

6
Design Considerations

This chapter provides guidance for creating applications that use specific SafeNet HSM configurations or features. It
contains the following topics:

• "PED-Authenticated HSMs" below

• "High Availability (HA) Implementations" on page 318

• "Migrating Keys From Software to a SafeNet HSM" on page 320

• "Audit Logging" on page 344

• "About Scalable Key Storage" on page 347

• "Scalable Key Storage (formerly SIM) APIs" on page 348

• "Using Scalable Key Storage in aMulti-HSM Environment" on page 351

PED-Authenticated HSMs
In systems or applications using SafeNet HSMs, SafeNet PED is required for FIPS 140-2 level 3 security. In normal
use, SafeNet PED supplies PINs and certain other critical security parameters to the token/HSM, invisibly to the user.
This prevents other persons from viewing PINs, etc. on a computer screen or watching them typed on a keyboard,
which in turn prevents such persons from illicitly cloning token or HSM contents.

Two classes of users operate SafeNet PED: the ordinary HSM Partition Owner, and the HSM Administrator, (also
called Security Officer or SO). The person handling new HSMs and using SafeNet PED is normally the HSM SO, who:

• initializes the HSM,

• conducts HSMmaintenance, such as firmware and capability upgrades,

• initializes HSM Partitions and tokens,

• creates users (sets PINs),

• changes policy settings,

• changes passwords.

Following these initial activities, the SafeNet PED may be required to present the HSM Partition Owner’s PED Key or
keys (in case of MofN operations) to enable ordinary signing cryptographic operations carried out by your applications.

With the combination of Activation and AutoActivation, the black PED Key is required only upon initial authentication
and then not again unless the authentication is interrupted by power failure or by deliberate action on the part of the PED
Key holders.

About CKDemo with SafeNet PED
As its name suggests, CKDemo (CryptoKi Demonstration) is a demonstration program, allowing you to explore the
capabilities and functions of several SafeNet products. The demo program breaks out a number of PKCS 11 functions,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 316

6 Design Considerations

as well as the SafeNet extensions to Cryptoki that allow the enhanced capabilities of our HSMs.However the flexibility,
combined with the bare-bones nature of the program, can result in some confusion as to whether certain operations and
combinations are permissible. Where these come up, in the explanation of CKDemowith SafeNet HSM with PED
[Trusted Path] Authentication, and SafeNet PED, they arementioned and explained if necessary.

The demo program appears tomake it optional to permit several of the security operations via the keyboard and
program interface, or to require that they be done only via the SafeNet PED keypad. In fact, the option is dictated by the
SafeNet HSM, as it was configured and shipped from the factory, and cannot be changed by you. That is, you can use
CKDemo to work/experiment with either type of SafeNet HSM – i.e., SafeNet HSM with Password Authentication or
SafeNet HSM with PED Authentication, requiring SafeNet PED), but you cannot make one type behave like the other.

Security and design requirements, enforced by the SafeNet HSM with PED Authentication HSM, dictate that use of
SafeNet PED bemandatory within the applications that you develop for it.

Interchangeability
As mentioned above, several secrets and security parameters related to HSMs are imprinted on PED Keys which
provide "something you have" access control, as opposed to the "something you know" access control provided by
password-authenticated HSMs. The HSM can create each type of secret, which is then also imprinted on a suitably
labeled PED Key. Alternatively, the secret can be accepted from a PED Key (previously imprinted by another HSM)
and imprinted on the current HSM. This is mandatory for the cloning domain, when HSMs (or HSM partitions) are to
clone objects one to the other. It is optional for the other HSM secrets, as amatter of convenience or of your security
policy, allowingmore than one HSM to be accessed for administration by a single SO (blue PED Key holder) or more
than one HSM Partition to be administered by a single Partition Owner/User. The exception is the SRK (purple PED
Key) which carries a secret unique to its HSM andwhich cannot be imprinted on any other HSM.

PED Keys that have never been imprinted are completely interchangeable. They can be used with any modern SafeNet
HSM, and can be imprinted with any of the various secrets. The self-stick labels are provided as a visual identifier of
which type of secret has been imprinted on a PED Key, or is about to be imprinted .Imprinted PED Keys are tied to their
associated HSMs and cannot be used to access HSMs or partitions that have been imprinted with different secrets.

Any SafeNet PED2 can be used with any SafeNet HSM - the PED itself contains no secrets; it simply provides the
interface between you and your HSM(s). The exception is that only some SafeNet PEDs have the capability to be used
remotely from the HSM. Any Remote-capable SafeNet PED2 is interchangeable with any other Remote-capable
SafeNet PED2, and any SafeNet PED2 (remote-capable or not) is interchangeable with any other when locally
connected to a SafeNet HSM.

HSM Partitions and Backup Tokens and PED Keys can be “re-cycled” for use in different combinations, but this reuse
requires re-initializing the HSM(s) and re-imprinting the PED Keys with new secrets or security parameters. Re-
initializing a token or HSM wipes previous information from it. Re-imprinting a PED Key overwrites any previous
information it carried (PIN, domain, etc.).

Startup
SafeNet PED expects to be connected to a SafeNet HSM with Trusted Path Authentication. At power-up, it presents a
message showing its firmware version. After a few seconds, themessage changes to "Awaiting command.." The
SafeNet PED is waiting for a command from the token/HSM.

The SafeNet PED screen remains in this status until the CKDemo program, or your own application, initiates a
command through the token/HSM.

For the purposes of demonstration, you would now go ahead and create some objects and perform other transactions
with the HSM.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 317

6 Design Considerations

Note: To perform most actions youmust be logged in. CKDemomay not remind you before
you perform actions out-of-order, but it generates error messages after such attempts. So, in
general, if you receive an error message from the program, review your recent actions to
determine if you have logged out or closed sessions and then not formally logged into a new
session before attempting to create an object or perform other token/HSM actions.

When you do wish to end activities, be sure to formally log out and close sessions. With
CKDemo, it would bemerely an inconvenience to have old sessions still open when you
attempt new activities. An orderly shutdown of your application, however, should include
logging out any users and closing all sessions on HSMs.

Cloning of Tokens
To securely copy the contents of a SafeNet Network HSM Partition to another SafeNet Network HSM Partition (on the
same SafeNet Network HSM or on another), youmust perform a backup to a SafeNet Backup HSM from the source
HSM Partition followed by a restore operation from the Backup HSM to the new destination HSM Partition. This is done
via lunash command line, and cannot be accomplished via CKDemo.

High Availability (HA) Implementations
If you use the SafeNet Network HSMHA feature then the calls to the SafeNet Enterprise HSMs are load-balanced. The
session handle that the application receives when it opens a session is a virtual one and is managed by the HA code in
the library. The actual sessions with the HSM are established by the HA code in the library and hidden from the
application and will come and go as necessary to fulfill application level requests.

Before the introduction of HA AutoInsert1 , bringing a failed or lost groupmember back into the group (recovery) was a
manual procedure.

The Administration & Maintenance section contains a general description of the how the HA AutoInsert function works,
in practice.

For every PKCS11 call, the HA recover logic will check to see if we need to perform automatic recovery to a
disconnected appliance. If there is a disconnected appliance then it will try to reconnect to that appliance before it
proceeds with the current PKCS11 call.

The HA recovery logic is designed in such a way that it will try to reconnect to an appliance only every X secs and N
number of times where X is pre-set to oneminute, and N is configurable via the "VTL" utility.

For HA recovery attempts:

• The default retry interval is 60 seconds.

• The default number of retries is effectively infinite.

• The HA configuration section in the Chrystoki.conf/crystoki.ini file is created and populated when either the interval
or the number of retries is specified in the lunacm hagroup retry commands.

The following is the pseudo code of the HA logic
if (disconnected_member > 0 and recover_attempt_count < N and time_now - last_recover_attempt >
X) then
 performance auto recovery
 set last_recover_attempt equal to time_now

1also known as "autorecovery", the re-introduction of a failed or lost member to an HA group.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 318

6 Design Considerations

 if (recovery failed) then
 increment recover_attempt_count by 1
 else
 decrement disconnected_member by 1
 reset recover_attempt_count to 0
 end if
end if

The HA automatic recovery design runs within a PKCS#11 call. The responsiveness of recovering a disconnected
member is greatly influenced by the frequency of PKCS11 calls from the user application. Although the logic shows that
it will attempt to recover a disconnected client in X secs, in reality, it will not run until the user applicationmakes the
next PKCS11 call.

Detecting the Failure of an HA Member
When an HA Groupmember first fails, the HA status for the group shows "device error" for the failedmember. All
subsequent calls return "token not present", until themember (HSM Partition or PKI token) is returned to service.

Here is an example of two such calls using CKDemo:
Enter your choice : 52
Slots available:
 slot#1 - LunaNet Slot
 slot#2 - LunaNet Slot
 slot#3 - HA Virtual Card Slot

Select a slot: 3

HA group 1599447001 status:
 HSM 599447001 - CKR_DEVICE_ERROR
 HSM 78665001 - CKR_OK
Status: Doing great, no errors (CKR_OK)

TOKEN FUNCTIONS
(1) Open Session (2) Close Session (3) Login
(4) Logout (5) Change PIN (6) Init Token
(7) Init Pin (8) Mechanism List (9) Mechanism Info
(10) Get Info (11) Slot Info (12) Token Info
(13) Session Info (14) Get Slot List (15) Wait for Slot Event
(16) InitToken(ind)(17) InitPin (ind) (18) Login (ind)
(19) CloneMofN

OBJECT MANAGEMENT FUNCTIONS
(20) Create object (21) Copy object (22) Destroy object
(23) Object size (24) Get attribute (25) Set attribute
(26) Find object (27) Display Object

SECURITY FUNCTIONS
(40) Encrypt file (41) Decrypt file (42) Sign
(43) Verify (44) Hash file (45) Simple Generate Key
(46) Digest Key

HIGH AVAILABILITY RECOVERY FUNCTIONS
(50) HA Init (51) HA Login (52) HA Status

KEY FUNCTIONS
(60) Wrap key (61) Unwrap key (62) Generate random number
(63) Derive Key (64) PBE Key Gen (65) Create known keys
(66) Seed RNG (67) EC User Defined Curves

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 319

6 Design Considerations

CA FUNCTIONS
(70) Set Domain (71) Clone Key (72) Set MofN
(73) Generate MofN (74) Activate MofN (75) Generate Token Keys
(76) Get Token Cert(77) Sign Token Cert(78) Generate CertCo Cert
(79) Modify MofN (86) Dup. MofN Keys (87) Deactivate MofN

CCM FUNCTIONS
(80) Module List (81) Module Info (82) Load Module
(83) Load Enc Mod (84) Unload Module (85) Module function Call

OTHERS
(90) Self Test (94) Open Access (95) Close Access
(97) Set App ID (98) Options

OFFBOARD KEY STORAGE:
(101) Extract Masked Object (102) Insert Masked Object
(103) Multisign With Value (104) Clone Object
(105) SIMExtract (106) SIMInsert
(107) SimMultiSign

SCRIPT EXECUTION:
(108) Execute Script
(109) Execute Asynchronous Script
(110) Execute Single Part Script
(0) Quit demo
Enter your choice : 52

Slots available:
 slot#1 - LunaNet Slot
 slot#2 - LunaNet Slot
 slot#3 - HA Virtual Card Slot

Select a slot: 3

HA group 1599447001 status:
 HSM 599447001 - CKR_TOKEN_NOT_PRESENT
 HSM 78665001 - CKR_OK
Status: Doing great, no errors (CKR_OK)
--- end ---

Migrating Keys From Software to a SafeNet HSM
SafeNet HSMs expect key material to be in PKCS#8 format. PKCS#8 format follows BER (Basic encoding rules)
/DER (distinguished encoding rules) encoding. An example of this format can be found in the document "Some
examples of PKCS standards" produced by RSA, and available on their web site
(http://www.rsasecurity.com/rsalabs/pkcs/index.html at the bottom of the page, under “Related Documents”).

Here is an example of a formatted key:
 0x30,
0x82, 0x04, 0xbc, 0x02, 0x01, 0x00, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, 0x04,
0xa6, 0x30, 0x82, 0x04, 0xa2, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01, 0x01,
0x00, 0xb8, 0xb5, 0x0f, 0x49, 0x46, 0xb5, 0x5d, 0x58, 0x04, 0x8e, 0x52,
0x59, 0x39, 0xdf, 0xd6, 0x29, 0x45, 0x6b, 0x6c, 0x96, 0xbb, 0xab, 0xa5,
0x6f, 0x72, 0x1b, 0x16, 0x96, 0x74, 0xd5, 0xf9, 0xb4, 0x41, 0xa3, 0x7c,
0xe1, 0x94, 0x73, 0x4b, 0xa7, 0x23, 0xff, 0x61, 0xeb, 0xce, 0x5a, 0xe7,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 320

6 Design Considerations

0x7f, 0xe3, 0x74, 0xe8, 0x52, 0x5b, 0xd6, 0x5d, 0x5c, 0xdc, 0x98, 0x49,
0xfe, 0x51, 0xc2, 0x7e, 0x8f, 0x3b, 0x37, 0x5c, 0xb3, 0x11, 0xed, 0x85,
0x91, 0x15, 0x92, 0x24, 0xd8, 0xf1, 0x7b, 0x3d, 0x2f, 0x8b, 0xcd, 0x1b,
0x30, 0x14, 0xa3, 0x6b, 0x1b, 0x4d, 0x27, 0xff, 0x6a, 0x58, 0x84, 0x9e,
0x79, 0x94, 0xca, 0x78, 0x64, 0x01, 0x33, 0xc3, 0x58, 0xfc, 0xd3, 0x83,
0xeb, 0x2f, 0xab, 0x6f, 0x85, 0x5a, 0x38, 0x41, 0x3d, 0x73, 0x20, 0x1b,
0x82, 0xbc, 0x7e, 0x76, 0xde, 0x5c, 0xfe, 0x42, 0xd6, 0x7b, 0x86, 0x4f,
0x79, 0x78, 0x29, 0x82, 0x87, 0xa6, 0x24, 0x43, 0x39, 0x74, 0xfe, 0xf2,
0x0c, 0x08, 0xbe, 0xfa, 0x1e, 0x0a, 0x48, 0x6f, 0x14, 0x86, 0xc5, 0xcd,
0x9a, 0x98, 0x09, 0x2d, 0xf3, 0xf3, 0x5a, 0x7a, 0xa4, 0xe6, 0x8a, 0x2e,
0x49, 0x8a, 0xde,
0x73, 0xe9, 0x37, 0xa0, 0x5b, 0xef, 0xd0, 0xe0, 0x13, 0xac, 0x88, 0x5f,
0x59, 0x47, 0x96, 0x7f, 0x78, 0x18, 0x0e, 0x44, 0x6a, 0x5d, 0xec,
0x6e, 0xed, 0x4f, 0xf6, 0x6a, 0x7a, 0x58, 0x6b, 0xfe, 0x6c, 0x5a, 0xb9,
0xd2, 0x22, 0x3a, 0x1f, 0xdf, 0xc3, 0x09, 0x3f, 0x6b, 0x2e, 0xf1, 0x6d,
0xc3, 0xfb, 0x4e, 0xd4, 0xf2, 0xa3, 0x94, 0x13, 0xb0, 0xbf, 0x1e, 0x06,
0x2e, 0x29, 0x55, 0x00, 0xaa, 0x98, 0xd9, 0xe8, 0x77, 0x84, 0x8b, 0x3f,
0x5f, 0x5e, 0xf7, 0xf8, 0xa7, 0xe6, 0x02, 0xd2, 0x18, 0xb0, 0x52, 0xd0,
0x37, 0x2e, 0x53, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x01, 0x00,
0x0c, 0xdf, 0xd1, 0xe8, 0xf1, 0x9c, 0xc2, 0x9c, 0xd7, 0xf4, 0x73, 0x98,
0xf4, 0x87, 0xbd, 0x8d, 0xb2, 0xe1, 0x01, 0xf8, 0x9f, 0xac, 0x1f, 0x23,
0xdd, 0x78, 0x35, 0xe2, 0xd6, 0xd1, 0xf3, 0x4d, 0xb5, 0x25, 0x88, 0x16,
0xd1, 0x1a, 0x18, 0x33, 0xd6, 0x36, 0x7e, 0xc4, 0xc8, 0xe5, 0x5d, 0x2d,
0x74, 0xd5, 0x39, 0x3c, 0x44, 0x5a, 0x74, 0xb7, 0x7c, 0x48, 0xc1, 0x1f,
0x90, 0xe3, 0x55, 0x9e, 0xf6, 0x29, 0xad, 0xb4, 0x6d, 0x93, 0x78, 0xb3,
0xdc, 0x25, 0x0b, 0x9c, 0x73, 0x78, 0x7b, 0x93, 0x4c, 0xd3, 0x47, 0x09,
0xda, 0xe6, 0x69, 0x18, 0xc6, 0x0f, 0xfb, 0xa5, 0x95, 0xf5, 0xe8, 0x75,
0xe1, 0x01, 0x1b, 0xd3, 0x1c, 0xa2, 0x57, 0x03, 0x64, 0xdb, 0xf9, 0x5d,
0xf3, 0x3c, 0xa7, 0xd1, 0x4b, 0xb0, 0x90, 0x1b, 0x90, 0x62, 0xb4, 0x88,
0x30, 0x4b, 0x40, 0x4d, 0xcf, 0x7d, 0x89, 0x7a, 0xfb, 0x29, 0xc9, 0x64,
0x34, 0x0a, 0x52, 0xf6, 0x70, 0x7c, 0x76, 0x5a, 0x2e, 0x8f, 0x50, 0xd4,
0x92, 0x15, 0x97, 0xed, 0x4c, 0x2e, 0xf2, 0x3a, 0xd0, 0x58, 0x7e, 0xdb,
0xf1, 0xf4, 0xdd, 0x07, 0x76, 0x04, 0xf0, 0x55, 0x8b, 0x72, 0x2b, 0xa7,
0xa8, 0x78, 0x78, 0x67, 0xe6, 0xd8, 0xa5, 0xde, 0xe7, 0xc9, 0x1f, 0x5a,
0xa0, 0x89, 0xc7, 0x24, 0xa2, 0x71, 0xb6, 0x7b, 0x3b, 0xe6, 0x92, 0x69,
0x22, 0xaa, 0xe2, 0x47, 0x4b, 0x80, 0x3f, 0x6a, 0xab, 0xce, 0x4e, 0xcd,
0xe8, 0x94, 0x6c, 0xf7, 0x84, 0x73, 0x85, 0xfd, 0x85, 0x1d, 0xae, 0x81,
0xf7, 0xec, 0x12, 0x31, 0x7d, 0xc1, 0x99, 0xc0, 0x3c, 0x51, 0xb0, 0xdc,
0xb0, 0xba, 0x9c, 0x84, 0xb8, 0x70, 0xc2, 0x09, 0x7f, 0x96, 0x3d, 0xa1,
0xe2, 0x64, 0x27, 0x7a, 0x22, 0xb8, 0x75, 0xb9, 0xd1, 0x5f, 0xa5, 0x23,
0xf9, 0x62, 0xe0, 0x41, 0x02, 0x81, 0x81, 0x00, 0xf4, 0xf3, 0x08, 0xcf,
0x83, 0xb0, 0xab, 0xf2, 0x0f, 0x1a, 0x08, 0xaf, 0xc2, 0x42, 0x29, 0xa7,
0x9c, 0x5e, 0x52, 0x19, 0x69, 0x8d, 0x5b, 0x52, 0x29, 0x9c, 0x06, 0x6a,
0x5a, 0x32, 0x8f, 0x08, 0x45, 0x6c, 0x43, 0xb5, 0xac, 0xc3, 0xbb, 0x90,
0x7b, 0xec, 0xbb, 0x5d, 0x71, 0x25, 0x82, 0xf8, 0x40, 0xbf, 0x38, 0x00,
0x20, 0xf3, 0x8a, 0x38, 0x43, 0xde, 0x04, 0x41, 0x19, 0x5f, 0xeb, 0xb0,
0x50, 0x59, 0x10, 0xe1, 0x54, 0x62, 0x5c, 0x93, 0xd9, 0xdc, 0x63, 0x24,
0xd0, 0x17, 0x00, 0xc0, 0x44, 0x3e, 0xfc, 0xd1, 0xda, 0x4b, 0x24, 0xf7,
0xcb, 0x16, 0x35, 0xe6, 0x9f, 0x67, 0x96, 0x5f, 0xb0, 0x94, 0xde, 0xfa,
0xa1, 0xfd, 0x8c, 0x8a, 0xd1, 0x5c, 0x02, 0x8d, 0xe0, 0xa0, 0xa0, 0x02,
0x1d, 0x56, 0xaf, 0x13, 0x3a, 0x65, 0x5e, 0x8e, 0xde, 0xd1, 0xa8, 0x28,
0x8b, 0x71, 0xc9, 0x65, 0x02, 0x81, 0x81, 0x00, 0xc1, 0x0a, 0x47,
0x39, 0x91, 0x06, 0x1e, 0xb9, 0x43, 0x7c, 0x9e, 0x97, 0xc5, 0x09, 0x08,
0xbc, 0x22, 0x47, 0xe2, 0x96, 0x8e, 0x1c, 0x74, 0x80, 0x50, 0x6c, 0x9f,
0xef, 0x2f, 0xe5, 0x06, 0x3e, 0x73, 0x66, 0x76, 0x02, 0xbd, 0x9a, 0x1c,
0xfc, 0xf9, 0x6a, 0xb8, 0xf9, 0x36, 0x15, 0xb5, 0x20, 0x0b, 0x6b, 0x54,
0x83, 0x9c, 0x86, 0xba, 0x13, 0xb7, 0x99, 0x54, 0xa0, 0x93, 0x0d, 0xd6,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 321

6 Design Considerations

0x1e, 0xc1, 0x12, 0x72, 0x0d, 0xea, 0xb0, 0x14, 0x30, 0x70, 0x73, 0xef,
0x6b, 0x4c, 0xae, 0xb6, 0xff, 0xd4, 0xbb, 0x89, 0xa1, 0xec, 0xca, 0xa6,
0xe9, 0x95, 0x56, 0xac, 0xe2, 0x9b, 0x97, 0x2f, 0x2c, 0xdf, 0xa3, 0x6e,
0x59, 0xff, 0xcd, 0x3c, 0x6f, 0x57, 0xcc, 0x6e, 0x44, 0xc4, 0x27, 0xbf,
0xc3, 0xdd, 0x19, 0x9e, 0x81, 0x16, 0xe2, 0x8f, 0x65, 0x34, 0xa7, 0x0f,
0x22, 0xba, 0xbf, 0x79, 0x57, 0x02, 0x81, 0x80, 0x2e, 0x21, 0x0e, 0xc9,
0xb5, 0xad, 0x31, 0xd4, 0x76, 0x0f, 0x9b, 0x0f, 0x2e, 0x70, 0x33, 0x54,
0x03, 0x58, 0xa7, 0xf1, 0x6d, 0x35, 0x57, 0xbb, 0x53, 0x66, 0xb4, 0xb6,
0x96, 0xa1, 0xea, 0xd9, 0xcd, 0xe9, 0x23, 0x9f, 0x35, 0x17, 0xef, 0x5c,
0xb8, 0x59, 0xce, 0xb7, 0x3c, 0x35, 0xaa, 0x42, 0x82, 0x3f, 0x00, 0x96,
0xd5, 0x9d, 0xc7, 0xab, 0xec, 0xec, 0x04, 0xb5, 0x15, 0xc8, 0x40, 0xa4,
0x85, 0x9d, 0x20, 0x56, 0xaf, 0x03, 0x8f, 0x17, 0xb0, 0xf1, 0x96, 0x22,
0x3a, 0xa5, 0xfa, 0x58, 0x3b, 0x01, 0xf9, 0xae, 0xb3, 0x83, 0x6f, 0x44,
0xd3, 0x14, 0x2d, 0xb6, 0x6e, 0xd2, 0x9d, 0x39, 0x0c, 0x12, 0x1d, 0x23,
0xea, 0x19, 0xcb, 0xbb, 0xe0, 0xcd, 0x89, 0x15, 0x9a, 0xf5, 0xe4, 0xec,
0x41, 0x06, 0x30, 0x16, 0x58, 0xea, 0xfa, 0x31, 0xc1, 0xb8, 0x8e, 0x08,
0x84, 0xaa, 0x3b, 0x19, 0x02, 0x81, 0x80, 0x70, 0x4c, 0xf8, 0x6e, 0x86,
0xed, 0xd6, 0x85, 0xd4, 0xba, 0xf4, 0xd0, 0x3a, 0x32, 0x2d, 0x40, 0xb5,
0x78, 0xb8, 0x5a, 0xf9, 0xc5, 0x98, 0x08, 0xe5, 0xc0, 0xab, 0xb2, 0x4c,
0x5c, 0xa2, 0x2b, 0x46, 0x9b, 0x3e, 0xe0, 0x0d, 0x49, 0x50, 0xbf, 0xe2,
0xa1, 0xb1, 0x86, 0x59, 0x6e, 0x7b, 0x76, 0x6e, 0xee, 0x3b, 0xb6, 0x6d,
0x22, 0xfb, 0xb1, 0x68, 0xc7, 0xec, 0xb1, 0x95, 0x9b, 0x21, 0x0b, 0xb7,
0x2a, 0x71, 0xeb, 0xa2, 0xb2, 0x58, 0xac, 0x6d, 0x5f, 0x24, 0xd3, 0x79,
0x42, 0xd2, 0xf7, 0x35, 0xdc, 0xfc, 0x0e, 0x95, 0x60, 0xb7, 0x85, 0x7f,
0xf9, 0x72, 0x8e, 0x4a, 0x11, 0xc3, 0xc2, 0x09, 0x40, 0x5c, 0x7c, 0x43,
0x12, 0x34, 0xac, 0x59, 0x99, 0x76, 0x34, 0xcf,
0x20, 0x88, 0xb0, 0xfb, 0x39, 0x62, 0x3a, 0x9b, 0x03, 0xa6, 0x84, 0x2c,
0x03, 0x5c, 0x0c, 0xca, 0x33, 0x85, 0xf5, 0x02, 0x81, 0x80, 0x56,
0x99, 0xe9, 0x17, 0xdc, 0x33, 0xe1, 0x33, 0x8d, 0x5c, 0xba, 0x17, 0x32,
0xb7, 0x8c, 0xbd, 0x4b, 0x7f, 0x42, 0x3a, 0x79, 0x90, 0xe3, 0x70,
0xe3, 0x27, 0xce, 0x22, 0x59, 0x02, 0xc0, 0xb1, 0x0e, 0x57, 0xf5, 0xdf,
0x07, 0xbf, 0xf8, 0x4e, 0x10, 0xef, 0x2a, 0x62, 0x30, 0x03, 0xd4,
0x80, 0xcf, 0x20, 0x84, 0x25, 0x66, 0x3f, 0xc7, 0x4f, 0x56, 0x8c, 0x1e,
0xe1, 0x18, 0x91, 0xc1, 0xfd, 0x71, 0x5f, 0x65, 0x9b, 0xe4, 0x4f,
0xe0, 0x1a, 0x3a, 0xf8, 0xc1, 0x69, 0xdb, 0xd3, 0xbb, 0x8d, 0x91, 0xd1,
0x11, 0x4f, 0x7e, 0x91, 0x1b, 0xb4, 0x27, 0xa5, 0xab, 0x7c, 0x7b,
0x76, 0xd4, 0x78, 0xfe, 0x63, 0x44, 0x63, 0x7e, 0xe3, 0xa6, 0x60, 0x4f,
0xb9, 0x55, 0x28, 0xba, 0xba, 0x83, 0x1a, 0x2d, 0x43, 0xd5, 0xf7,
0x2e, 0xe0, 0xfc, 0xa8, 0x14, 0x9b, 0x91, 0x2a, 0x36, 0xbf, 0xc7, 0x14

The example above contains the exponent, themodulus, and private key material.

Other Formats of Key Material
The format of key material depends on the application, and is therefore unpredictable. Key material commonly exists in
any of the following formats; ASN1, PEM, P12, PFX, etc. Key material in those formats, or in another format, can likely
be re-formatted to be acceptable for moving onto the SafeNet HSM.

Sample Program
The sample program below encrypts a knownRSA private key, then unwraps the key pair onto the SafeNet HSM
Partition.

/**\

*

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 322

6 Design Considerations

* File: UnwrapKey.cpp*

* Encrypts a PrivateKeyInfo structure with a generated DES key and then

* unwraps the RSA key onto a token.

*

* This file is provided as an example only.

*

*

* Copyright (C) 2011, SafeNet, Inc.

*

* All rights reserved. This file contains information that is

* proprietary to SafeNet, Inc. andmay not be

* distributed or copied without written consent from

* SafeNet, Inc.

*

**/

#ifdef UNIX

#define _POSIX_SOURCE 1

#endif

#ifdef USING_STATIC_CHRYSTOKI

define STATIC ckdemo_cpp

#endif

#include <assert.h>

#include <iostream.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <time.h>

#ifdef _WINDOWS

#include <conio.h>

#include <io.h>

#include <windows.h>

#endif

#ifdef UNIX

#include <unistd.h>

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 323

6 Design Considerations

#endif

#include "source/cryptoki.h"

#include "source/Ckbridge.h"

#define DIM(a) (sizeof(a)/sizeof(a[0]))

CK_BBOOL no = FALSE;

CK_BBOOL yes = TRUE;

const int MAX =100;

// Function Prototypes

CK_RV Pinlogin(CK_SESSION_HANDLE hSession);

int getPinString(CK_CHAR_PTR pw);

// Main

int main(void)

{

 int error = 0;

 CK_RV retCode = CKR_OK;

 CK_SESSION_HANDLE hSessionHandle;

 CK_CHAR_PTR userPIN = (CK_CHAR_PTR)"default";

 CK_USHORT lenuserPIN = 7;

 CK_CHAR_PTR soPIN = (CK_CHAR_PTR)"default";

 CK_USHORT lensoPIN = 7;

 CK_USHORT usNumberOfSlots;

 CK_SLOT_ID_PTR pSlotList;

 CK_OBJECT_HANDLE hKey;

 CK_MECHANISMmech;

 CK_VERSION version;

 struct

{

 CK_INFO info;

 char reserved[100]; // This is in case the library that we are

 // talking to requires a larger info structure

 // then the one defined.

 } protectedInfo;

//Disclaimer

 cout << "\n\n\n\n";

cout << "THE SOFTWARE IS PROVIDED BY SAFENET INCORPORATED (SAFENET) ON AN 'AS IS' BASIS, \n";

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 324

6 Design Considerations

cout << "WITHOUT ANY OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED \n";

cout << "TO, WARRANTIES OFMERCHANTABLE QUALITY, SATISFACTORY QUALITY, MERCHANTABILITY
OR FITNESS FOR\n";

cout << "A PARTICULAR PURPOSE, OR THOSE ARISINGBY LAW, STATUTE, USAGE OF TRADE, COURSE
OF DEALINGOR\n";

cout << "OTHERWISE. SAFENET DOES NOTWARRANT THAT THE SOFTWAREWILLMEET YOUR
REQUIREMENTS OR \n";

cout << "THAT OPERATION OF THE SOFTWAREWILL BE UNINTERRUPTED OR THAT THE SOFTWAREWILL
BE ERROR-FREE.\n";

cout << "YOU ASSUME THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE.
NEITHER \n";

cout << "SAFENET NOR OUR LICENSORS, DEALERS OR SUPPLIERS SHALLHAVE ANY LIABILITY TOYOU
OR ANY\n";

cout << "OTHER PERSON OR ENTITY FOR ANY INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
PUNITIVE, \n";

cout << "EXEMPLARY OR AY OTHER DAMAGESWHATSOEVER, INCLUDING, BUT NOT LIMITED TO, LOSS
OF REVENUE OR \n";

cout << "PROFIT, LOST OR DAMAGED DATA, LOSS OF USE OR OTHER COMMERCIALOR ECONOMIC LOSS,
EVEN IF \n";

cout << "SAFENET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR THEY ARE
FORESEEABLE. \n";

cout << "SAFENET IS ALSONOT RESPONSIBLE FOR CLAIMS BY A THIRD PARTY. THE MAXIMUM
AGGREGATE \n";

cout << "LIABILITY OF SAFENET TOYOU AND THAT OF SAFENET’S LICENSORS, DEALERS AND
SUPPLIERS \n";

cout << "SHALLNOT EXCEED FORTY DOLLARS ($40.00CDN). THE LIMITATIONS IN THIS SECTION SHALL
APPLY \n";

cout << "WHETHER OR NOT THE ALLEGED BREACH OR DEFAULT IS A BREACH OF A FUNDAMENTAL
CONDITION OR TERM \n";

cout << "OR A FUNDAMENTAL BREACH. SOME STATES/COUNTRIES DONOT ALLOW THE EXCLUSION OR
LIMITATION OF\n";

cout << "LIABILITY FOR CONSEQUENTIALOR INCIDENTALDAMAGES, SO THE ABOVE LIMITATION MAY
NOT APPLY TO \n";

cout << "YOU.\n";

cout << "THE LIMITED WARRANTY, EXCLUSIVE REMEDIES AND LIMITED LIABILITY SET OUT HEREIN ARE
FUNDAMENTAL \n";

cout << "ELEMENTS OF THE BASIS OF THE BARGAIN BETWEEN YOU AND SAFENET. \n";

cout << "NOSUPPORT. YOU ACKNOWLEDGE AND AGREE THAT THERE ARE NOSUPPORT SERVICES
PROVIDED BY SAFENET\n";

cout << "INCORPORATED FOR THIS SOFTWARE\n" << endl;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 325

6 Design Considerations

 // Display Generic Warning

 cout << "\nInsert a token for the test...";

 cout << "\n\nWARNING!!! This test initializes the first ";

 cout << " token detected in the card reader.";

 cout << "\nDo not use a token that you don't want erased.";

 cout << "\nYou can use CTRL-C to abort now...Otherwise...";

 cout << "\n\n... press <Enter> key to continue ...\n";

 cout.flush();

 getchar(); // Wait for keyboard hit

#ifndef STATIC

 // Connect to Chrystoki

if(!CrystokiConnect())

{

cout << "\n" "Unable to connect to Chrystoki. Error = " << LibError() << "\n";

error = -1;

 goto exit_routine_1;

}

#endif

 // Verify this is the version of the library required

 retCode = C_GetInfo(&protectedInfo.info);

 if(retCode != CKR_OK)

{

 cout << endl << "Unable to call C_GetInfo() before C_Initialize()\n";

error = -2;

 goto exit_routine_2;

 }

 else

{

 CK_BYTE majorVersion = protectedInfo.info.version.major;

 CK_BYTE expectedVersion;

#ifndef PKCS11_2_0

 expectedVersion = 1;

#else

 expectedVersion = 2;

#endif

 if(expectedVersion != majorVersion)

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 326

6 Design Considerations

{

 cout << endl << "This version of the program was built for Cryptoki version "

 << (int)expectedVersion << ".\n"

 << "The loaded Cryptoki library reports its version to be "

 << (int)majorVersion << ".\n"

 << "Program will terminate.\n";

 // Wait to exit until user readmessage and acknowledges

 cout << endl << "Press <Enter> key to end.";

 getchar(); // Wait for keyboard hit

 error = -3;

 goto exit_routine_2;

 }

 }

 // Initialize the Library

retCode = C_Initialize(NULL);

if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode << " initializing cryptoki.\n";

error = -4;

 goto exit_routine_3;

}

// Get the number of tokens possibly available

retCode = C_GetSlotList(TRUE, NULL, &usNumberOfSlots);

if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode << " getting slot list.\n";

error = -5;

 goto exit_routine_3;

}

// Are any tokens present?

if(usNumberOfSlots == 0)

{

cout << "\n" "No tokens found\n";

error = -6;

 goto exit_routine_3;

 }

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 327

6 Design Considerations

 // Get a list of slots

pSlotList = new CK_SLOT_ID[usNumberOfSlots];

retCode = C_GetSlotList(TRUE, pSlotList, &usNumberOfSlots);

if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode << " getting slot list.\n";

error = -7;

 goto exit_routine_4;

}

 // Open a session

retCode = C_OpenSession(pSlotList[0], CKF_RW_SESSION | CKF_SERIAL_SESSION,

 NULL, NULL, &hSessionHandle);

if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode << " opening session.\n";

error = -9;

 goto exit_routine_4;

}

Pinlogin(hSessionHandle);

if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode << " Calling PinLogin fn";

exit(hSessionHandle);

}

 // Encrypt an RSA Key and then unwrap it onto the token

{

 // The following is an RSA Key that is formatted as a PrivateKeyInfo structure

 //BER encoded format

 const CK_BYTE pRsaKey[] = {

 0x30, 0x82, 0x04, 0xbc, 0x02, 0x01, 0x00, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01,

0x01, 0x05, 0x00, 0x04,

 0x82, 0x04, 0xa6, 0x30, 0x82, 0x04, 0xa2, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01, 0x01, 0x00, 0xb8, 0xb5, 0x0f, 0x49,

0x46, 0xb5, 0x5d, 0x58,

 0x04, 0x8e, 0x52, 0x59, 0x39, 0xdf, 0xd6, 0x29, 0x45, 0x6b, 0x6c, 0x96, 0xbb, 0xab, 0xa5, 0x6f, 0x72, 0x1b, 0x16,

0x96, 0x74, 0xd5, 0xf9,

 0xb4, 0x41, 0xa3, 0x7c, 0xe1, 0x94, 0x73, 0x4b, 0xa7, 0x23, 0xff, 0x61, 0xeb, 0xce, 0x5a, 0xe7, 0x7f, 0xe3, 0x74,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 328

6 Design Considerations

0xe8, 0x52, 0x5b, 0xd6,

 0x5d, 0x5c, 0xdc, 0x98, 0x49, 0xfe, 0x51, 0xc2, 0x7e, 0x8f, 0x3b, 0x37, 0x5c, 0xb3, 0x11, 0xed, 0x85, 0x91, 0x15,

0x92, 0x24, 0xd8, 0xf1,

 0x7b, 0x3d, 0x2f, 0x8b, 0xcd, 0x1b, 0x30, 0x14, 0xa3, 0x6b, 0x1b, 0x4d, 0x27, 0xff, 0x6a, 0x58, 0x84, 0x9e, 0x79,

0x94, 0xca, 0x78, 0x64,

 0x01, 0x33, 0xc3, 0x58, 0xfc, 0xd3, 0x83, 0xeb, 0x2f, 0xab, 0x6f, 0x85, 0x5a, 0x38, 0x41, 0x3d, 0x73, 0x20, 0x1b,

0x82, 0xbc, 0x7e, 0x76,

 0xde, 0x5c, 0xfe, 0x42, 0xd6, 0x7b, 0x86, 0x4f, 0x79, 0x78, 0x29, 0x82, 0x87, 0xa6, 0x24, 0x43, 0x39, 0x74, 0xfe,

0xf2, 0x0c, 0x08, 0xbe,

 0xfa, 0x1e, 0x0a, 0x48, 0x6f, 0x14, 0x86, 0xc5, 0xcd, 0x9a, 0x98, 0x09, 0x2d, 0xf3, 0xf3, 0x5a, 0x7a, 0xa4, 0xe6,

0x8a, 0x2e, 0x49, 0x8a, 0xde, 0x73, 0xe9, 0x37, 0xa0, 0x5b, 0xef,

 0xd0, 0xe0, 0x13, 0xac, 0x88, 0x5f, 0x59, 0x47, 0x96, 0x7f, 0x78, 0x18, 0x0e, 0x44, 0x6a, 0x5d, 0xec, 0x6e, 0xed,

0x4f, 0xf6, 0x6a, 0x7a,

 0x58, 0x6b, 0xfe, 0x6c, 0x5a, 0xb9, 0xd2, 0x22, 0x3a, 0x1f, 0xdf, 0xc3, 0x09, 0x3f, 0x6b, 0x2e, 0xf1, 0x6d, 0xc3,

0xfb, 0x4e, 0xd4, 0xf2,

 0xa3, 0x94, 0x13, 0xb0, 0xbf, 0x1e, 0x06, 0x2e, 0x29, 0x55, 0x00, 0xaa, 0x98, 0xd9, 0xe8, 0x77, 0x84, 0x8b, 0x3f,

0x5f, 0x5e, 0xf7, 0xf8,

 0xa7, 0xe6, 0x02, 0xd2, 0x18, 0xb0, 0x52, 0xd0, 0x37, 0x2e, 0x53, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x01,

0x00, 0x0c, 0xdf, 0xd1,

 0xe8, 0xf1, 0x9c, 0xc2, 0x9c, 0xd7, 0xf4, 0x73, 0x98, 0xf4, 0x87, 0xbd, 0x8d, 0xb2, 0xe1, 0x01, 0xf8, 0x9f, 0xac,

0x1f, 0x23, 0xdd, 0x78,

 0x35, 0xe2, 0xd6, 0xd1, 0xf3, 0x4d, 0xb5, 0x25, 0x88, 0x16, 0xd1, 0x1a, 0x18, 0x33, 0xd6, 0x36, 0x7e, 0xc4, 0xc8,

0xe5, 0x5d, 0x2d, 0x74,

 0xd5, 0x39, 0x3c, 0x44, 0x5a, 0x74, 0xb7, 0x7c, 0x48, 0xc1, 0x1f, 0x90, 0xe3, 0x55, 0x9e, 0xf6, 0x29, 0xad, 0xb4,

0x6d, 0x93, 0x78, 0xb3,

 0xdc, 0x25, 0x0b, 0x9c, 0x73, 0x78, 0x7b, 0x93, 0x4c, 0xd3, 0x47, 0x09, 0xda, 0xe6, 0x69, 0x18, 0xc6, 0x0f, 0xfb,

0xa5, 0x95, 0xf5, 0xe8,

 0x75, 0xe1, 0x01, 0x1b, 0xd3, 0x1c, 0xa2, 0x57, 0x03, 0x64, 0xdb, 0xf9, 0x5d, 0xf3, 0x3c, 0xa7, 0xd1, 0x4b, 0xb0,

0x90, 0x1b, 0x90, 0x62,

 0xb4, 0x88, 0x30, 0x4b, 0x40, 0x4d, 0xcf, 0x7d, 0x89, 0x7a, 0xfb, 0x29, 0xc9, 0x64, 0x34, 0x0a, 0x52, 0xf6, 0x70,

0x7c, 0x76, 0x5a, 0x2e,

 0x8f, 0x50, 0xd4, 0x92, 0x15, 0x97, 0xed, 0x4c, 0x2e, 0xf2, 0x3a, 0xd0, 0x58, 0x7e, 0xdb, 0xf1, 0xf4, 0xdd, 0x07,

0x76, 0x04, 0xf0, 0x55,

 0x8b, 0x72, 0x2b, 0xa7, 0xa8, 0x78, 0x78, 0x67, 0xe6, 0xd8, 0xa5, 0xde, 0xe7, 0xc9, 0x1f, 0x5a, 0xa0, 0x89, 0xc7,

0x24, 0xa2, 0x71, 0xb6,

 0x7b, 0x3b, 0xe6, 0x92, 0x69, 0x22, 0xaa, 0xe2, 0x47, 0x4b, 0x80, 0x3f, 0x6a, 0xab, 0xce, 0x4e, 0xcd, 0xe8, 0x94,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 329

6 Design Considerations

0x6c, 0xf7, 0x84, 0x73,

 0x85, 0xfd, 0x85, 0x1d, 0xae, 0x81, 0xf7, 0xec, 0x12, 0x31, 0x7d, 0xc1, 0x99, 0xc0, 0x3c, 0x51, 0xb0, 0xdc, 0xb0,

0xba, 0x9c, 0x84, 0xb8,

 0x70, 0xc2, 0x09, 0x7f, 0x96, 0x3d, 0xa1, 0xe2, 0x64, 0x27, 0x7a, 0x22, 0xb8, 0x75, 0xb9, 0xd1, 0x5f, 0xa5, 0x23,

0xf9, 0x62, 0xe0, 0x41,

 0x02, 0x81, 0x81, 0x00, 0xf4, 0xf3, 0x08, 0xcf, 0x83, 0xb0, 0xab, 0xf2, 0x0f, 0x1a, 0x08, 0xaf, 0xc2, 0x42, 0x29,

0xa7, 0x9c, 0x5e, 0x52,

 0x19, 0x69, 0x8d, 0x5b, 0x52, 0x29, 0x9c, 0x06, 0x6a, 0x5a, 0x32, 0x8f, 0x08, 0x45, 0x6c, 0x43, 0xb5, 0xac, 0xc3,

0xbb, 0x90, 0x7b, 0xec,

 0xbb, 0x5d, 0x71, 0x25, 0x82, 0xf8, 0x40, 0xbf, 0x38, 0x00, 0x20, 0xf3, 0x8a, 0x38, 0x43, 0xde, 0x04, 0x41, 0x19,

0x5f, 0xeb, 0xb0, 0x50,

 0x59, 0x10, 0xe1, 0x54, 0x62, 0x5c, 0x93, 0xd9, 0xdc, 0x63, 0x24, 0xd0, 0x17, 0x00, 0xc0, 0x44, 0x3e, 0xfc, 0xd1,

0xda, 0x4b, 0x24, 0xf7,

 0xcb, 0x16, 0x35, 0xe6, 0x9f, 0x67, 0x96, 0x5f, 0xb0, 0x94, 0xde, 0xfa, 0xa1, 0xfd, 0x8c, 0x8a, 0xd1, 0x5c, 0x02,

0x8d, 0xe0, 0xa0, 0xa0,

 0x02, 0x1d, 0x56, 0xaf, 0x13, 0x3a, 0x65, 0x5e, 0x8e, 0xde, 0xd1, 0xa8, 0x28, 0x8b, 0x71, 0xc9, 0x65, 0x02, 0x81,

0x81, 0x00, 0xc1, 0x0a,

 0x47, 0x39, 0x91, 0x06, 0x1e, 0xb9, 0x43, 0x7c, 0x9e, 0x97, 0xc5, 0x09, 0x08, 0xbc, 0x22, 0x47, 0xe2, 0x96, 0x8e,

0x1c, 0x74, 0x80, 0x50,

 0x6c, 0x9f, 0xef, 0x2f, 0xe5, 0x06, 0x3e, 0x73, 0x66, 0x76, 0x02, 0xbd, 0x9a, 0x1c, 0xfc, 0xf9, 0x6a, 0xb8, 0xf9,

0x36, 0x15, 0xb5, 0x20,

 0x0b, 0x6b, 0x54, 0x83, 0x9c, 0x86, 0xba, 0x13, 0xb7, 0x99, 0x54, 0xa0, 0x93, 0x0d, 0xd6, 0x1e, 0xc1, 0x12, 0x72,

0x0d, 0xea, 0xb0, 0x14,

 0x30, 0x70, 0x73, 0xef, 0x6b, 0x4c, 0xae, 0xb6, 0xff, 0xd4, 0xbb, 0x89, 0xa1, 0xec, 0xca, 0xa6, 0xe9, 0x95, 0x56,

0xac, 0xe2, 0x9b, 0x97,

 0x2f, 0x2c, 0xdf, 0xa3, 0x6e, 0x59, 0xff, 0xcd, 0x3c, 0x6f, 0x57, 0xcc, 0x6e, 0x44, 0xc4, 0x27, 0xbf, 0xc3, 0xdd,

0x19, 0x9e, 0x81, 0x16,

 0xe2, 0x8f, 0x65, 0x34, 0xa7, 0x0f, 0x22, 0xba, 0xbf, 0x79, 0x57, 0x02, 0x81, 0x80, 0x2e, 0x21, 0x0e, 0xc9, 0xb5,

0xad, 0x31, 0xd4, 0x76,

 0x0f, 0x9b, 0x0f, 0x2e, 0x70, 0x33, 0x54, 0x03, 0x58, 0xa7, 0xf1, 0x6d, 0x35, 0x57, 0xbb, 0x53, 0x66, 0xb4, 0xb6,

0x96, 0xa1, 0xea, 0xd9,

 0xcd, 0xe9, 0x23, 0x9f, 0x35, 0x17, 0xef, 0x5c, 0xb8, 0x59, 0xce, 0xb7, 0x3c, 0x35, 0xaa, 0x42, 0x82, 0x3f, 0x00,

0x96, 0xd5, 0x9d, 0xc7,

 0xab, 0xec, 0xec, 0x04, 0xb5, 0x15, 0xc8, 0x40, 0xa4, 0x85, 0x9d, 0x20, 0x56, 0xaf, 0x03, 0x8f, 0x17, 0xb0, 0xf1,

0x96, 0x22, 0x3a, 0xa5,

 0xfa, 0x58, 0x3b, 0x01, 0xf9, 0xae, 0xb3, 0x83, 0x6f, 0x44, 0xd3, 0x14, 0x2d, 0xb6, 0x6e, 0xd2, 0x9d, 0x39, 0x0c,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 330

6 Design Considerations

0x12, 0x1d, 0x23, 0xea,

 0x19, 0xcb, 0xbb, 0xe0, 0xcd, 0x89, 0x15, 0x9a, 0xf5, 0xe4, 0xec, 0x41, 0x06, 0x30, 0x16, 0x58, 0xea, 0xfa, 0x31,

0xc1, 0xb8, 0x8e, 0x08,

 0x84, 0xaa, 0x3b, 0x19, 0x02, 0x81, 0x80, 0x70, 0x4c, 0xf8, 0x6e, 0x86, 0xed, 0xd6, 0x85, 0xd4, 0xba, 0xf4, 0xd0,

0x3a, 0x32, 0x2d, 0x40,

 0xb5, 0x78, 0xb8, 0x5a, 0xf9, 0xc5, 0x98, 0x08, 0xe5, 0xc0, 0xab, 0xb2, 0x4c, 0x5c, 0xa2, 0x2b, 0x46, 0x9b, 0x3e,

0xe0, 0x0d, 0x49, 0x50,

 0xbf, 0xe2, 0xa1, 0xb1, 0x86, 0x59, 0x6e, 0x7b, 0x76, 0x6e, 0xee, 0x3b, 0xb6, 0x6d, 0x22, 0xfb, 0xb1, 0x68, 0xc7,

0xec, 0xb1, 0x95, 0x9b,

 0x21, 0x0b, 0xb7, 0x2a, 0x71, 0xeb, 0xa2, 0xb2, 0x58, 0xac, 0x6d, 0x5f, 0x24, 0xd3, 0x79, 0x42, 0xd2, 0xf7, 0x35,

0xdc, 0xfc, 0x0e, 0x95,

 0x60, 0xb7, 0x85, 0x7f, 0xf9, 0x72, 0x8e, 0x4a, 0x11, 0xc3, 0xc2, 0x09, 0x40, 0x5c, 0x7c, 0x43, 0x12, 0x34, 0xac,

0x59, 0x99, 0x76, 0x34,

 0xcf, 0x20, 0x88, 0xb0, 0xfb, 0x39, 0x62, 0x3a, 0x9b, 0x03, 0xa6, 0x84, 0x2c, 0x03, 0x5c, 0x0c, 0xca, 0x33, 0x85,

0xf5, 0x02, 0x81, 0x80,

 0x56, 0x99, 0xe9, 0x17, 0xdc, 0x33, 0xe1, 0x33, 0x8d, 0x5c, 0xba, 0x17, 0x32, 0xb7, 0x8c, 0xbd, 0x4b, 0x7f, 0x42,

0x3a, 0x79, 0x90, 0xe3,

 0x70, 0xe3, 0x27, 0xce, 0x22, 0x59, 0x02, 0xc0, 0xb1, 0x0e, 0x57, 0xf5, 0xdf, 0x07, 0xbf, 0xf8, 0x4e, 0x10, 0xef,

0x2a, 0x62, 0x30, 0x03,

 0xd4, 0x80, 0xcf, 0x20, 0x84, 0x25, 0x66, 0x3f, 0xc7, 0x4f, 0x56, 0x8c, 0x1e, 0xe1, 0x18, 0x91, 0xc1, 0xfd, 0x71,

0x5f, 0x65, 0x9b, 0xe4,

 0x4f, 0xe0, 0x1a, 0x3a, 0xf8, 0xc1, 0x69, 0xdb, 0xd3, 0xbb, 0x8d, 0x91, 0xd1, 0x11, 0x4f, 0x7e, 0x91, 0x1b, 0xb4,

0x27, 0xa5, 0xab, 0x7c,

 0x7b, 0x76, 0xd4, 0x78, 0xfe, 0x63, 0x44, 0x63, 0x7e, 0xe3, 0xa6, 0x60, 0x4f, 0xb9, 0x55, 0x28, 0xba, 0xba, 0x83,

0x1a, 0x2d, 0x43, 0xd5,

 0xf7, 0x2e, 0xe0, 0xfc, 0xa8, 0x14, 0x9b, 0x91, 0x2a, 0x36, 0xbf, 0xc7, 0x14

 };

CK_BYTE

 knownRSA1Modulus[] = {

0xb8, 0xb5, 0x0f, 0x49, 0x46, 0xb5, 0x5d, 0x58, 0x04, 0x8e, 0x52, 0x59, 0x39, 0xdf, 0xd6,

0x29,

0x45, 0x6b, 0x6c, 0x96, 0xbb, 0xab, 0xa5, 0x6f, 0x72, 0x1b, 0x16, 0x96, 0x74, 0xd5, 0xf9,

0xb4,

0x41, 0xa3, 0x7c, 0xe1, 0x94, 0x73, 0x4b, 0xa7, 0x23, 0xff, 0x61, 0xeb, 0xce, 0x5a, 0xe7,

0x7f,

0xe3, 0x74, 0xe8, 0x52, 0x5b, 0xd6, 0x5d, 0x5c, 0xdc, 0x98, 0x49, 0xfe, 0x51, 0xc2, 0x7e,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 331

6 Design Considerations

0x8f,

0x3b, 0x37, 0x5c, 0xb3, 0x11, 0xed, 0x85, 0x91, 0x15, 0x92, 0x24, 0xd8, 0xf1, 0x7b, 0x3d,

0x2f,

0x8b, 0xcd, 0x1b, 0x30, 0x14, 0xa3, 0x6b, 0x1b, 0x4d, 0x27, 0xff, 0x6a, 0x58, 0x84, 0x9e,

0x79,

0x94, 0xca, 0x78, 0x64, 0x01, 0x33, 0xc3, 0x58, 0xfc, 0xd3, 0x83, 0xeb, 0x2f, 0xab, 0x6f,

0x85,

0x5a, 0x38, 0x41, 0x3d, 0x73, 0x20, 0x1b, 0x82, 0xbc, 0x7e, 0x76, 0xde, 0x5c, 0xfe, 0x42,

0xd6,

0x7b, 0x86, 0x4f, 0x79, 0x78, 0x29, 0x82, 0x87, 0xa6, 0x24, 0x43, 0x39, 0x74, 0xfe, 0xf2,

0x0c,

0x08, 0xbe, 0xfa, 0x1e, 0x0a, 0x48, 0x6f, 0x14, 0x86, 0xc5, 0xcd, 0x9a, 0x98, 0x09, 0x2d,

0xf3,

0xf3, 0x5a, 0x7a, 0xa4, 0xe6, 0x8a, 0x2e, 0x49, 0x8a, 0xde, 0x73, 0xe9, 0x37, 0xa0, 0x5b,

0xef,

0xd0, 0xe0, 0x13, 0xac, 0x88, 0x5f, 0x59, 0x47, 0x96, 0x7f, 0x78, 0x18, 0x0e, 0x44, 0x6a,

0x5d,

0xec, 0x6e, 0xed, 0x4f, 0xf6, 0x6a, 0x7a, 0x58, 0x6b, 0xfe, 0x6c, 0x5a, 0xb9, 0xd2, 0x22,

0x3a,

0x1f, 0xdf, 0xc3, 0x09, 0x3f, 0x6b, 0x2e, 0xf1, 0x6d, 0xc3, 0xfb, 0x4e, 0xd4, 0xf2, 0xa3,

0x94,

0x13, 0xb0, 0xbf, 0x1e, 0x06, 0x2e, 0x29, 0x55, 0x00, 0xaa, 0x98, 0xd9, 0xe8, 0x77, 0x84,

0x8b,

0x3f, 0x5f, 0x5e, 0xf7, 0xf8, 0xa7, 0xe6, 0x02, 0xd2, 0x18, 0xb0, 0x52, 0xd0, 0x37, 0x2e,

0x53,

 },

 knownRSA1PubExponent[] = { 0x01, 0x00, 0x01 };

 char *pPlainData = 0;

 unsigned long ulPlainDataLength;

 char *pEncryptedData = 0;

 unsigned long ulEncryptedDataLength = 0;

 CK_MECHANISMmech;

 CK_USHORT usStatus=0,

 usKeyLength;

 CK_OBJECT_HANDLE hKey;

 CK_OBJECT_CLASS SymKeyClass = CKO_SECRET_KEY;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 332

6 Design Considerations

 CK_BBOOL bTrue = 1,

 bFalse = 0,

 bToken = bTrue,

 bSensitive = bTrue,

 bPrivate = bTrue,

 bEncrypt = bTrue,

 bDecrypt = bTrue,

 bSign = bFalse, // "..."

 bVerify = bFalse, //Will not allow sign/verify operation.

 bWrap = bTrue,

 bUnwrap = bTrue,

#ifdef EXTRACTABLE

 bExtract = bTrue,

#endif //EXTRACTABLE

 bDerive = bTrue;

 CK_KEY_TYPE keyType;

 CK_USHORT usValueBits;

 char pbPublicKeyLabel[128];

 CK_ATTRIBUTE_PTR pPublicTemplate;

 CK_USHORT usPublicTemplateSize = 0;

 char iv[8] = { '1', '2', '3', '4', '5', '6', '7', '8' };

 CK_ATTRIBUTE SymKeyTemplate[] = {

{CKA_CLASS, 0, sizeof(SymKeyClass)},

{CKA_KEY_TYPE, 0, sizeof(keyType)},

{CKA_TOKEN, 0, sizeof(bToken)},

{CKA_SENSITIVE, 0, sizeof(bSensitive)},

{CKA_PRIVATE, 0, sizeof(bPrivate)},

{CKA_ENCRYPT, 0, sizeof(bEncrypt)},

{CKA_DECRYPT, 0, sizeof(bDecrypt)},

{CKA_SIGN, 0, sizeof(bSign)},

{CKA_VERIFY, 0, sizeof(bVerify)},

{CKA_WRAP, 0, sizeof(bWrap)},

{CKA_UNWRAP, 0, sizeof(bUnwrap)},

{CKA_DERIVE, 0, sizeof(bDerive)},

{CKA_VALUE_LEN,0, sizeof(usKeyLength) },

{CKA_LABEL, 0, 0} // Always keep last!!!

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 333

6 Design Considerations

#ifdef EXTRACTABLE //Conditional stuff must be at the end!!!!!

{CKA_EXTRACTABLE, 0, sizeof(bExtract)},

#endif //EXTRACTABLE

 };

 CK_OBJECT_HANDLE hUnWrappedKey, hPublicRSAKey;

 char *pbWrappedKey;

 unsigned long ulWrappedKeySize;

 CK_OBJECT_CLASS privateKey = CKO_PRIVATE_KEY,

publicKey = CKO_PUBLIC_KEY;

 CK_KEY_TYPE rsaType = CKK_RSA;

 CK_BYTE pLabel[] = "RSA private Key",

pbPublicRSAKeyLabel[] = "RSA Public Key";

 CK_ATTRIBUTE *pTemplate;

 CK_ULONG usTemplateSize,

ulPublicRSAKeyTemplateSize;

 CK_ATTRIBUTE pPublicRSAKeyTemplate[] = {

{CKA_CLASS, 0, sizeof(publicKey) },

{CKA_KEY_TYPE, 0, sizeof(rsaType) },

{CKA_TOKEN, 0, sizeof(bToken) },

{CKA_PRIVATE, 0, sizeof(bPrivate) },

{CKA_ENCRYPT, 0, sizeof(bEncrypt) },

{CKA_VERIFY, 0, sizeof(bSign) },

{CKA_WRAP, 0, sizeof(bWrap) },

{CKA_MODULUS, 0, sizeof(knownRSA1Modulus) },

{CKA_PUBLIC_EXPONENT, 0, sizeof(knownRSA1PubExponent) },

{CKA_LABEL, 0, sizeof(pbPublicRSAKeyLabel) }

 };

 CK_ATTRIBUTE pPrivateKeyTemplate[] = {

{CKA_CLASS, &privateKey, sizeof(privateKey) },

{CKA_KEY_TYPE, &rsaType, sizeof(rsaType) },

{CKA_TOKEN, &bToken, sizeof(bToken) },

{CKA_SENSITIVE,&bSensitive, sizeof(bSensitive) },

{CKA_PRIVATE, &bPrivate, sizeof(bPrivate) },

{CKA_DECRYPT, &bEncrypt, sizeof(bEncrypt) },

{CKA_SIGN, &bSign, sizeof(bSign) },

 //{CKA_SIGN_RECOVER, &bTrue, sizeof(bTrue) },

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 334

6 Design Considerations

{CKA_UNWRAP, &bWrap, sizeof(bWrap) },

{CKA_EXTRACTABLE, &bFalse, sizeof(bFalse) },

{CKA_LABEL, pLabel, sizeof(pLabel) }

 };

 // Generate a DES3 Key

 SymKeyTemplate[0].pValue = &SymKeyClass;

 SymKeyTemplate[1].pValue = &keyType;

 SymKeyTemplate[2].pValue = &bToken;

 SymKeyTemplate[3].pValue = &bSensitive;

 SymKeyTemplate[4].pValue = &bPrivate;

 SymKeyTemplate[5].pValue = &bEncrypt;

 SymKeyTemplate[6].pValue = &bDecrypt;

 SymKeyTemplate[7].pValue = &bSign;

 SymKeyTemplate[8].pValue = &bVerify;

 SymKeyTemplate[9].pValue = &bWrap;

 SymKeyTemplate[10].pValue = &bUnwrap;

 SymKeyTemplate[11].pValue = &bDerive;

 SymKeyTemplate[12].pValue = &usKeyLength;

 SymKeyTemplate[13].pValue = pbPublicKeyLabel;

#ifdef EXTRACTABLE

 SymKeyTemplate[14].pValue = &bExtract;

#endif //EXTRACTABLE

 mech.mechanism = CKM_DES3_KEY_GEN;

 mech.pParameter = 0;

 mech.usParameterLen = 0;

 keyType = CKK_DES3;

 usKeyLength = 24;

 strcpy(pbPublicKeyLabel, "Generated DES3 Key");

 pPublicTemplate = SymKeyTemplate;

 usPublicTemplateSize = DIM(SymKeyTemplate);

 // Adjust size of label (ALWAYS LAST ENTRY IN ARRAY)

 pPublicTemplate[usPublicTemplateSize-1].usValueLen = strlen(

pbPublicKeyLabel);

 retCode = C_GenerateKey(hSessionHandle,

(CK_MECHANISM_PTR)&mech,

 pPublicTemplate,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 335

6 Design Considerations

 usPublicTemplateSize,

 &hKey);

 if(retCode == CKR_OK)

{

 cout << pbPublicKeyLabel << ": " << hKey << endl;

 }

 else

{

 cout << "\n" "Error 0x" << hex << retCode;

 cout << " generating the DES3 Key.\n";

 error = -11;

 goto exit_routine_6;

 }

 // Encrypt the RSA Key

 mech.mechanism = CKM_DES3_CBC;

 mech.pParameter = iv;

 mech.usParameterLen = sizeof(iv);

 pPlainData = (char *)(pRsaKey);

 ulPlainDataLength = sizeof(pRsaKey);

 // Allocatememory for output buffer

 if(retCode == CKR_OK)

{

 pEncryptedData = new char [ulPlainDataLength + 2048]; // Leave

// extra room for

// RSA Operations

 if(!pEncryptedData)

{

 retCode = CKR_DEVICE_ERROR;

 }

 }

 // Start encrypting

 if(retCode == CKR_OK)

{

 retCode = C_EncryptInit(hSessionHandle, &mech, hKey);

 }

 // Continue encrypting

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 336

6 Design Considerations

 if(retCode == CKR_OK)

{

 CK_USHORT usInDataLen,

 usOutDataLen = (CK_USHORT) (ulPlainDataLength + 2048);

 CK_ULONG ulBytesRemaining = ulPlainDataLength;

 char * pPlainTextPointer = pPlainData;

 char * pEncryptedDataPointer = pEncryptedData;

 while (ulBytesRemaining > 0)

{

 if (ulBytesRemaining > 0xfff0) // We are longer than a USHORT can handle

{

 usInDataLen = 0xfff0;

 ulBytesRemaining -= usInDataLen;

 }

 else

{

 usInDataLen = (CK_USHORT) ulBytesRemaining;

 ulBytesRemaining -= usInDataLen;

 }

 retCode = C_EncryptUpdate(hSessionHandle,

(CK_BYTE_PTR)pPlainTextPointer,

 usInDataLen,

(CK_BYTE_PTR)pEncryptedDataPointer,

 &usOutDataLen);

 pPlainTextPointer += usInDataLen;

 pEncryptedDataPointer += usOutDataLen;

 ulEncryptedDataLength += usOutDataLen;

 }

 }

 // Finish encrypting

 if(retCode == CKR_OK)

{

 CK_USHORT usOutDataLen;

 CK_BYTE_PTR pOutData = (CK_BYTE_PTR)pEncryptedData;

 pOutData += ulEncryptedDataLength;

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 337

6 Design Considerations

 retCode = C_EncryptFinal(hSessionHandle, pOutData, &usOutDataLen);

 ulEncryptedDataLength += usOutDataLen;

 }

 else

{

 cout << "\n" "Error 0x" << hex << retCode;

 cout << " somewhere in the encrypting.\n";

 if(pEncryptedData)

{

 delete pEncryptedData;

 }

 error = -12;

 goto exit_routine_6;

 }

 mech.mechanism = CKM_DES3_CBC;

 mech.pParameter = (void*) "12345678"; // 8 byte IV

 mech.usParameterLen = 8;

 pTemplate = pPrivateKeyTemplate;

 usTemplateSize = DIM(pPrivateKeyTemplate);

 pbWrappedKey = pEncryptedData;

 ulWrappedKeySize = ulEncryptedDataLength;

 if(retCode == CKR_OK)

{

 retCode = C_UnwrapKey(hSessionHandle,

 &mech,

 hKey,

(CK_BYTE_PTR)pbWrappedKey,

(CK_USHORT)ulWrappedKeySize,

 pTemplate,

 usTemplateSize,

 &hUnWrappedKey);

 }

 // Report unwrapped key handle

 if(retCode == CKR_OK)

{

 cout << "\n Private key Unwrapped key is:" << hUnWrappedKey <<"\n\n";

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 338

6 Design Considerations

 }

 else

{

 cout << "\n" "Error 0x" << hex << retCode;

 cout << " unwrapping.\n";

 if(pEncryptedData)

{

 delete pEncryptedData;

 }

 error = -13;

 goto exit_routine_6;

 }

 // Release temporary memory

 if(pEncryptedData)

{

 delete pEncryptedData;

 }

 // Create the Public Key that goes with the Private Key

 if(retCode == CKR_OK)

{

 // Unwrap it onto the token

 pPublicRSAKeyTemplate[0].pValue = &publicKey;

 pPublicRSAKeyTemplate[1].pValue = &rsaType;

 pPublicRSAKeyTemplate[2].pValue = &bToken;

 pPublicRSAKeyTemplate[3].pValue = &bPrivate;

 pPublicRSAKeyTemplate[4].pValue = &bEncrypt;

 pPublicRSAKeyTemplate[5].pValue = &bSign;

 pPublicRSAKeyTemplate[6].pValue = &bWrap;

 pPublicRSAKeyTemplate[7].pValue = knownRSA1Modulus;

 pPublicRSAKeyTemplate[8].pValue = knownRSA1PubExponent;

 pPublicRSAKeyTemplate[9].pValue = pbPublicRSAKeyLabel;

 pTemplate = pPublicRSAKeyTemplate;

 usTemplateSize = DIM(pPublicRSAKeyTemplate);

 retCode = C_CreateObject(hSessionHandle,

pTemplate,

 usTemplateSize,

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 339

6 Design Considerations

 &hPublicRSAKey);

 if(retCode == CKR_OK)

{

 cout << pbPublicRSAKeyLabel << ": " << hPublicRSAKey << endl;

 }

 else

{

 cout << "\n" "Error 0x" << hex << retCode;

 cout << " creating the RSA Public Key.\n";

 error = -14;

 goto exit_routine_6;

 }

 }

if(retCode == CKR_OK)

{

CK_CHAR label[] = "RSA Key";

CK_ATTRIBUTE RSAFindPriTemplate[] =

{

CKA_LABEL, label, sizeof(label)

};

CK_ULONG numHandles;

CK_OBJECT_HANDLE handles[1000];

retCode = C_FindObjectsInit(hSessionHandle, RSAFindPriTemplate, 1);

if(retCode != CKR_OK)

{

cout << "C_FindObjectsInit not returning OK (" << hex << retCode << ")\n\n";

goto exit_routine_6;

}

retCode =C_FindObjects(hSessionHandle , handles, 90,

&numHandles);

if(retCode != CKR_OK)

{

cout << "C_FindObjects not returning OK (" << hex <<

retCode << ")\n\n";

goto exit_routine_6;

}

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 340

6 Design Considerations

cout << "Everything's GOOD\n\n";

for(int i=0; i < numHandles; i++)

{

cout << handles[i] << "\n";

}

}

}

//CJM-> END OF TEST CODE

 // Beginning of exit routines

exit_routine_6:

 // Logout

 retCode = C_Logout(hSessionHandle);

 if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode << " logging out.";

}

exit_routine_5:

// Close the session

 retCode = C_CloseSession(hSessionHandle);

if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode << " closing session.";

}

exit_routine_4:

 delete pSlotList;

exit_routine_3:

#ifdef PKCS11_2_0

 C_Finalize(0);

#else

 C_Terminate();

#endif

exit_routine_2:

#ifndef STATIC

 // No longer need Chrystoki

 CrystokiDisconnect();

#endif

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 341

6 Design Considerations

exit_routine_1:

 cout << "\nDone. (" << dec << error << ")\n";

 cout.flush();

 return error;

}

CK_RV Pinlogin(CK_SESSION_HANDLE hSession)

{

CK_RV retCode;

unsigned char buffer[MAX];

int count =0;

cout << "Please enter the USER password : " << endl;

//calling get PinString tomask input, variable "count"

//holds length of "buffer"(password)

//needed for Login call

count = getPinString(buffer);

//Login as user on token in slot

retCode = C_Login(hSession, CKU_USER, buffer, count);

if(retCode != CKR_OK)

{

cout << "\n" "Error 0x" << hex << retCode;

 cout << " logging in as user.";

 exit(hSession);

 return -3;

}

cout << "logging into the token....";

cout << "\nlogged into token " << endl;

return retCode;

}

///

// getPinString()

// ==============

//

// This function retrieves a pin string from the user. It modifies the

// consolemode before starting so that the characters the user types are

// not echoed, and a '*' character is displayed for each typed character

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 342

6 Design Considerations

// instead.

//

// Backspace is supported, but we don't get any fancier than that.

//

int getPinString(CK_CHAR_PTR pw)

{

 int len=0;

 char c=0;

 // Unfortunately, themethod of turning off character echo is

// different forWindows and Unix platforms. So we have to

// conditionally compile the appropriate section. Even the basic

// password retrieval is slightly different, since

 // Windows and Unix use different character codes for the return key.

#ifdef WIN32

 DWORD mode;

 // This consolemode stuff only applies to windows. We'll have to

// do something else when it comes to unix.

 if (GetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), &mode)) {

 if (SetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), mode & (!ENABLE_ECHO_INPUT))) {

 while (c != '\r') {

 // wait for a character to be hit

 while (!_kbhit()) {

 Sleep(100);

 }

 // get it

 c = _getch();

 // check for carriage return

 if (c != '\r') {

 // check for backspace

 if (c!='\b') {

 // neither CR nor BS -- add it to the password string

 printf("*");

 *pw++ = c;

 len++;

 } else {

// handle backspace -- delete the last character &

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 343

6 Design Considerations

// erase it from the screen

 if (len > 0) {

 pw--;

 len--;

 printf("\b \b");

}

}

}

}

 // Add the zero-termination

 *pw = '\0';

 SetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), mode);

 printf("\n");

}

 }

#endif

 return len;

}

Audit Logging
By default, the HSM logs select events to the file hsm.log.

For more robust and verifiable logging, SafeNet HSM (after version 5.2) includes the Audit Logging feature, to log select
HSM events to files that can be securely verified for audit purposes.

The HSM creates a log secret unique to the HSM, computed during the first initialization after manufacture. The log
secret resides in flashmemory (permanent, non-volatile memory), and is used to create log records that are sent to a
log file. Later, the log secret is used to prove that a log record originated from a legitimate HSM and has not been
tampered with.

Audit Log Records
A log record consists of two fields – the logmessage and the HMAC for the previous record. When the HSM creates a
log record, it uses the log secret to compute the SHA256-HMAC of all data contained in that logmessage, plus the
HMAC of the previous log entry. The HMAC is stored in HSM flashmemory. The logmessage is then transmitted,
along with the HMAC of the previous record, to the host. The host has a logging daemon to receive and store the log
data on the host hard drive.

For the first logmessage ever returned from the HSM to the host there is no previous record and, therefore, no HMAC in
flash. In this case, the previous HMAC is set to zero and the first HMAC is computed over the first logmessage
concatenated with 32 zero-bytes. The first record in the log file then consists of the first logmessage plus 32 zero-
bytes. The second record consists of the secondmessage plus HMAC1 = HMAC (message1 || 0x0000). This results in
the organization shown below.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 344

6 Design Considerations

MSG 1 HMAC 0

. . .

MSG n-1 HMAC n-2

MSG n HMAC n-1

. . .

MSG n+m HMAC n+m-1

MSG n+m+1 HMAC n+m

. . .

MSG end HMAC n+m-1

Recent HMAC in NVRAM HMAC end

To verify a sequence ofm log records which is a subset of the complete log, starting at index n, the host must submit
the data illustrated above. The HSM calculates the HMAC for each record the sameway as it did when the record was
originally generated, and compares this HMAC to the value it received. If all of the calculated HMACs match the
received HMACs, then the entire sequence verifies. If an HMAC doesn’t match, then the associated record and all
following records can be considered suspect. Because the HMAC of eachmessage depends on the HMAC of the
previous one, inserting or alteringmessages would cause the calculated HMAC to be invalid.

The HSM always stores the HMAC of themost-recently generated logmessage in flashmemory. When checking
truncation, the host would send the newest record in its log to the HSM; and, the HSMwould compute the HMAC and
compare it to the one in flash. If it does not match, then truncation has occurred.

Audit Log Message Format
Eachmessage is a fixed-length, comma delimited, and newline-terminated string. The table below shows the width and
meaning of the fields in amessage.

Offset Length (Chars) Description

0 10 Sequence number

10 1 Comma

11 17 Timestamp

28 1 Comma

29 256 Message text, interpreted from raw data

285 1 Comma

286 64 HMAC of previous record as ASCII-HEX

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 345

6 Design Considerations

Offset Length (Chars) Description

350 1 Comma

351 96 Data for this record as ASCII-HEX (raw data)

447 1 Newline '\n'

The raw data for themessage is stored in ASCII-HEX form, along with a human-readable version. Although this format
makes themessages larger, it simplifies the verification process, as the HSM expects to receive raw data records.

Example
The following example shows a sample log record. It is separated into multiple lines for readability even though it is a
single record. Somewhite spaces are also omitted.
38,12/08/13 15:30:50,session 1 Access 2147483651:22621 operation LUNA_CREATE_CONTAINER
returned LUNA_RET_SM_UNKNOWN_TOSM_STATE(0x00300014) (using PIN (entry=LUNA_ENTRY_DATA_AREA)),
29C51014B6F131EC67CF48734101BBE301335C25F43EDF8828745C40755ABE25,
2600001003600B00EA552950140030005D580000030000800100000000000000000000000000000000000000

The sequence number is “38”. The time is “12/08/13 15:30:50”.

The logmessage is “session 1 Access 2147483651:22621 operation LUNA_CREATE_CONTAINER returned LUNA_
RET_SM_UNKNOWN_TOSM_STATE(0x00300014) (using PIN (entry=LUNA_ENTRY_DATA_AREA))”. In the
message text, the “who” is the session identified by “session 1 Access 2147483651:22621” (the application is identified
by the access ID major = 2147483651, minor = 22621). The “what” is “LUNA_CREATE_CONTAINER”. The operation
status is “LUNA_RET_SM_UNKNOWN_TOSM_STATE(0x00300014)”.

The HMAC of previous record is
“29C51014B6F131EC67CF48734101BBE301335C25F43EDF8828745C40755ABE25”.

The remainder is the raw data for this record as ASCII-HEX.

Log External
An important element of the security audit logging feature is the ‘Log External’ function. This SafeNet extension to
PKCS #11 allows a user application to insert text of the user’s choice into the log record stream. The function call is
CA_LogExternal (). It can be used, for example, to insert an application name or the name of the user who is logged
into the application and have the inserted text string protected as part of the audit log in the sameway as records that
have been generated by the HSM itself. It is recommended that applications use theCA_LogExternal () function
when the application starts to insert the application name and also to insert the user name each time an individual user
logs into or out of the application. The function is called as:

CA_LogExternal(CK_SLOT_ID slotID, CK_SESSION_HANDLE hSession, CK_CHAR_PTR pData, CK_ULONG
puldataLen);

where:

• slotID is PKCS #11 slot containing the HSM or partition being addressed,

• hSession is the handle of the session with which the record is to be associated,

• pData is the pointer to the character array containing the external message and

• puldataLen is the length of the character array.

Note that the input character array is limited to amaximum of 100 characters and it will be truncated at 100 characters if
puldataLen > 100.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 346

6 Design Considerations

For applications that cannot add this function call, it is possible to use the lunacm command-line function audit log
external within a startup script to insert a text record at the time the application is started.

When a user logs in to the SafeNet Network HSM lunash:> session, the CA_LogExternal () function is automatically
called to register the user name and access ID. Subsequent HSM operations can be tracked by the access ID.

Youmust configure the “log external” event category in order for the HSM to log the CA_LogExternal() messages.

About Scalable Key Storage
For customer applications involving large numbers of keys, that might exceed the internal flash-memory capacity of the
SafeNet Network HSM K6 engine, support is provided for secure external storage of keys.

For themost part, Scalable Key Storage functionality must be supported by custom programming. Our Software
Development Kit (available separately) includes documentation and samples for Cryptoki and Java APIs.

The following characteristics apply to the Scalable Key Storage capability:

• Scalable Key Storage is a purchased capability that must be enabled when your SafeNet Network HSM is
manufactured. Scalable Key Storage cannot be implemented with a SafeNet Network HSM that was not explicitly
enabled for Scalable Key Storage.

• The database-management aspects of large numbers of externally stored keys are beyond the scope of SafeNet
Network HSM. SafeNet Network HSM ensures the security of those keys, without reference to their management
and retrieval. Suchmanagement is the responsibility of the customer's application.

• All keys that are externally stored with this feature are strongly encrypted, using symmetric keys that are never
exposed outside the HSM server. Additional encryption and security measures are employed within the HSM
server to affordmultiple levels of security.

• All manipulations of the keys take place within protected, volatile memory inside the SafeNet Network HSM K6
engine.

Note: Each SafeNet Network HSM leaving the factory has a uniquemasking key, which is
used for Secure Identity Management. To give several SafeNet Enterprise HSMs the same
masking key, choose one and perform hsm -backup. Then, using that Backup HSM, perform
hsm -restore onto each SafeNet Network HSM that must share that masking key.

Note: When the HSM is initialized, a new masking secret is created. The new masking secret
will be backed up onto a backup token if "hsm backup" is performed, but the oldmasking
secret will continue to be used for all masking operations until the HSM is powered off.

A SafeNet Network HSMwith Scalable Key Storage enabled can support only a single HSM Partition.

WARNING! If the masking key is lost, then all extracted key material (all the keys in
your database) is effectively lost as well. Therefore, perform an HSM Backup, to
backup the Scalable Key Storage Masking Key.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 347

6 Design Considerations

Scalable Key Storage (formerly SIM) APIs

Note: The SafeNet Network HSMHA feature and Scalable Key Storage can be used
simultaneously in SafeNet Network HSM release 3.0 and later.

Applications use the following APIs to extract/insert keys under Scalable Key Storage. Themultisign function call is an
optimization that allows you to insert and sign (potentially) many objects at once.

CK_RV CK_ENTRY CA_ExtractMaskedObject(CK_SESSION_HANDLE hSession,
CK_ULONG ulObjectHandle,
CK_BYTE_PTR pMaskedKey,
CK_USHORT_PTR pusMaskedKeyLen);

CK_RV CK_ENTRY CA_InsertMaskedObject(CK_SESSION_HANDLE hSession,
CK_ULONG_PTR pulObjectHandle,
CK_BYTE_PTR pMaskedKey,
CK_USHORT usMaskedKeyLen);

CK_RV CK_ENTRY CA_MultisignValue(CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ULONG ulMaskedKeyLen,
CK_BYTE_PTR pMaskedKey,
CK_ULONG_PTR pulBlobCount,
CK_ULONG_PTR pulBlobLens,
CK_BYTE_PTR CK_PTR ppBlobs,
CK_ULONG_PTR pulSignatureLens,
CK_BYTE_PTR CK_PTR ppSignatures);

The SafeNet Software Developers Kit contains example code in our ckdemo example program that shows how to use
this API.

In general, the normal life cycle of a key pair is assumed to consist of the following steps:

• the key pair is generated

• the public exponent andmodulus are extracted for the creation of a certificate (CA_ExtractMaskedObject)

• the keys are used (some number of times, over a period of years) for cryptographic operations

You can useCA_MultisignValue to perform signing operations onmultiple objects at one time. CA_MultisignValue is
a self-contained call that cleans up after itself by destroying the inserted key before exiting.

You can useCA_InsertMaskedObject to use the inserted key for other operations (such as encryption) that you would
invoke via standard cryptoki calls. Youmust clean up by deleting the object when you have finished, to free the volatile
memory that was used.

The external keys are destroyed (wiped from the database) when no longer needed.

SIM II (Enhancements to SIM)
SIM II provides enhancements to SIM for the Cyptoki API and the Java API, as described in the following sections:

Cryptoki API
Three forms of authorization data are supported:

• text-based PINs

• a challenge/responsemechanism similar to the one used in SafeNet HSM (with Trusted Path Authentication) login

• a PED key mechanism similar to our legacy M-of-N activation for the HSM.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 348

6 Design Considerations

The form of authorization data is identified using the following definitions:
typedef CK_ULONG SIM_AUTHORIZATION_FORM;
#define SIM_AUTHORIZATION_PIN 0
#define SIM_AUTHORIZATION_CHALLENGE 1
#define SIM_AUTHORIZATION_PED 2

Three new API functions are added to cryptoki.h, as follows:

The CK_RV CA_SIMExtract function
CK_RV CA_SIMExtract(CK_ULONG handleCount, CK_ULONG *handleList,

CK_ULONG authForm, CK_ULONG authDataCount, CK_ULONG subsetRequired,
CK_BYTE **authDataList,
CK_BOOL deleteAfterExtract,
CK_ULONG *pBlobSize, CK_BYTE *pBlob);

This function takes a list of object handles, extracts them using the given authorization data for protection and returns
the extracted set of objects as a single data blob. The objects are left on the partition or destroyed, based on the value
of the delete-after-extract flag.

The authDataCount parameter defines the N value. The subsetRequired parameter defines theM value. The
authDataList parameter should have N entries in it if it is used.

For an authorization data form of PED or challenge/response, authDataList parameter is null – values are defined
through the PED.

The CK_RV SIMInsert function
CK_RV SIMInsert(CK_ULONG blobSize, CK_BYTE *pBlob,
 CK_ULONG authForm, CK_ULONG authDataCount, CK_BYTE **authDataList,
 CK_ULONG *pHandleListSize, CK_ULONG *pHandleList);

This function takes a previously extracted blob as input, validates the authorization data, inserts the objects contained
in the blob into the HSM, and returns the list of handles assigned to the objects.

For an authorization data form of PED, the authDataCount and authDataList parameters are not used. For other
authorization data forms, the authDataCount value should equal M, and the authDataList should haveM elements in
it.

The CK_RV SIMMultiSign function
CK_RV SIMMultiSign(CK_ULONG blobSize, CK_BYTE *pBlob,
 CK_ULONG authForm, CK_ULONG authDataCount, CK_BYTE **authDataList,
 CK_ULONG inputDataCount,
 CK_ULONG *inputDataLengths, CK_BYTE **inputDataTable,
 CK_ULONG *signatureLengths, CK_BYTE **signatureTable);

This function takes a previously extracted blob as input, validates the authorization data, then uses the key material in
the given key blob to sign the various pieces of data in the input data table, returning the signatures through the
signature table. The key blobmust contain a single key, otherwise an error is returned.

The authorization data parameters are handled as for the SIMInsert function.

Java API
The standard java keystore API supports a single password for each keystore, and a single password for each key in
the keystore. We provide a keystore implementation that stores key material in a file, using Scalable Key Storage

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 349

6 Design Considerations

(formerly SIM) to extract the key material. The password on the keystore is not used, but the password for each key is
used as authorization data for the Scalable Key Storagemasking process.

When a key is stored in this type of keystore, it is extracted using Scalable Key Storage and the appropriate
authorization data, but the key is left on the HSM. When a key is retrieved from this type of keystore, it is inserted onto
the HSM.

The standard keystore API supports 1-of-1 authorization inputs of the text form. Different authorization data forms are
supported through a custom API. The LunaTokenManager class is enhanced to provide a new method to allow the
authorization data for subsequent keystore operations to be defined. If the password parameter of a keystore
SetKeyEntry orSetCertificateEntrymethod call is given a null value, the actual authorization data will be taken from
the LunaTokenManager interface.

Note that it is up to application to serialize calls to LunaTokenManager and the keystore object if multiple threads are
simultaneously using keystores. That is, each threadmust ensure that it sets its authorization data in
LunaTokenManager and then performs its keystore operation without being interrupted by another thread changing the
LunaTokenManager authorization data.

Example Operations Using CKDemo
The following examples show how to use the ckdemo utility to perform SIM operations.

Multisign Challenge (Trusted Path Authentication Only)
1. Open Ckdemo and login as user.

2. Create a 1024 bit RSA key pair - 45,7,1024,1,1,1,1,1,1,1,1,1

3. Sim Extract (105)
Enter your choice : 105
Enter handle of object to add to blob (0 to end list, -1 to cancel): 10
Enter handle of object to add to blob (0 to end list, -1 to cancel): 0
Enter authentication form:
0 - none
1 - password
2 - challenge response
3 - PED-based
enter “2”
Enter number of authorization secrets (N value): 3
Enter subset size required for key use (M value): 2

4. The SafeNet PED displays your challenge secrets, be sure to record them.
Delete after extract? [0 = false, 1 = true] : 1

5. For every instance of data to sign, enter “12345678”.
The signatures should complete and be placed in a file.

6. Ensure that the private key has been extracted by performing CKDemo command 26,6 . This shows all the objects
on the token. The private key handle that you noted earlier should not be there.

7. Now, insert the blobfile back onto the token:
Select Insert masked object (106)
Enter “simkey.blob” as the keyblob to be re-inserted
Input 2 of the 3 challenges that you recorded earlier.

8. CKDemo 26,6 should reveal that the private key has been re-inserted.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 350

6 Design Considerations

SIM2 Multisign PED-based (PED/Trusted Path Configuration Only)
1. Open Ckdemo and login as user.

2. Create a 1024 bit RSA key pair - 45,7,1024,1,1,1,1,1,1,1,1,1. Note the private and public key handles.

3. Sim Extract (105)
Enter your choice : 105
Enter handle of object to add to blob (0 to end list, -1 to cancel): 10
Enter handle of object to add to blob (0 to end list, -1 to cancel): 0
Enter authentication form:
3 - none
4 - password
5 - challenge response
6 - PED-based
Enter “3”

4. Delete after extract? [0 = false, 1 = true] : 1

5. For every instance of data to sign, enter “12345678”.
The signatures should complete and the key should be placed in the file simkey.blob.

6. Ensure that the private key has been extracted by performing a 26,6 . This will show all the objects on the token.
The private key handle that you noted earlier should not be there.

7. Now, insert the blobfile back onto the token:
Select Insert masked object (106)
Enter “simkey.blob” as the keyblob to be re-inserted.
Input 2 of the 3 challenges that you recorded earlier.

8. CKDemo command 26,6 should reveal that the private key has been re-inserted.

Using Scalable Key Storage in a Multi-HSM Environment
Here are the basic steps to follow when setting up to use Scalable Key Storage with two SafeNet appliance units.

1. Initialize the first SafeNet appliance. Refer to the Configuration section of this Help. The domain created during this
initialization (a text string for Password Authenticated SafeNet appliance, or a red PED Key for PED Authenticated
SafeNet appliance) will be used as the domain for backup tokens and for the second SafeNet appliance.

2. Create the partition on the first SafeNet appliance.

3. Connect the backup HSM to the appliance USB port.

4. Insert the token into SafeNet Dock2, which is connected to the appliance USB port.

5. Initialize the backup HSM or token using token backup init lush command, with the same domain. Follow the on-
screen prompts. Use the domain from step 1.

6. Initialize the second SafeNet appliance. Use the same cloning domain as was used on the first SafeNet appliance .

7. Create the partition on the second SafeNet appliance.

8. Connect the backup HSM to the appliance USB port.

9. Insert the token into SafeNet Dock2, which is connected to the appliance USB port.

10. Perform hsm restore from the admin shell. Once this is completed, you now have both SafeNet appliances able
tomask and unmask keys using the same “master” key.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 351

6 Design Considerations

11. Set up your Clients and register both SafeNet appliances with each Client. In ckdemo, if you select option 14 (Slot
List) and select “Only slots with token present”, you should see two LunaNet slots.

12. When the lunaSign::Login function executes it will always login to slot 1 and slot 1 will always be there as long as at
least 1 SafeNet appliance is operational and accessible. The Login function returns the number of slots with
“tokens” present (in other words the number of accessible SafeNet appliance partitions). In normal operation in the
above case the value should be 2. If it returns with less than 2, then there is an added function that can be called
that will return the identity of the still live unit.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 352

7
Java Interfaces

This chapter describes the Java interfaces to the PKCS#11 API. It contains the following topics:

• "SafeNet JSP Overview and Installation" below

• "SafeNet JSP Configuration" on page 356

• "The JCPROV PKCS#11 JavaWrapper" on page 359

• "Java or JSP Errors" on page 365

• "Re-Establishing a Connection Between Your Java Application and SafeNet Network HSM" on page 366

• "Recovering From the Loss of All HA Members" on page 366

• "Elliptic Curve Problem in SUN JDK 1.6 and earlier" on page 368

• "Using Java Keytool with SafeNet HSM" on page 370

• "JSP Dynamic Registration Sample" on page 376

SafeNet JSP Overview and Installation
The SafeNet JSP is part of an application program interface (API) that allows Java applications tomake use of certain
SafeNet products.

As with other APIs, some existing Java-based applications might have generic requirements and calls that can already
work with SafeNet products. In other cases, it might be necessary for you or your vendor to create an application or to
adapt one, using the JSP API.

You have the choice of:

• using a previously integrated third-party application, known to work with this SafeNet product

• performing your own integration with a Java-based application supplied by you or a third party, or

• developing your own application using our Java API.

Develop your own Java apps using our included Software Development Kit, which includes SafeNet Java API usage
notes for developers, as well as development support by SafeNet. A standard Java development environment is
required, in addition to the API provided by SafeNet.

Please refer to the current-version SafeNet HSM Customer Release Notes (CRN) for themost up-to-date list of
supported platforms and APIs.

JDK Compatibility
We formally test SafeNet HSMs and our Java provider with SUN JDK for all platforms except AIX, and with IBM JDK
for the AIX platform. We have not had problems with OpenJDK, although it has not been part of our formal test suite.
The SafeNet JCE provider is compliant with the JCE specification, and should work with any JVM that implements the
Java language specification.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 353

7 Java Interfaces

Occasional problems have been encountered with respect to IBM JSSE.

GNU JDK shipped with most Linux systems has historically been incomplete and not suitable.

Installation
To use the SafeNet JavaSP service providers four main components are needed.

Java SDK 1.6.0.xx or 1.7.0.xx or 1.8.0.xx
First, acquire and install the Java SDK or RTE (available from the Java site, not included with the SafeNet software).
Javamust be installed before the SafeNet software, as some of the Java files must bemanipulated as described in the
JSP portions of the Getting Started section of this Help. Note that the JVM 1.6.x_xx or JVM 1.7.x or JVM 1.8.x is part
of the Java SDK.

Java Cryptographic JCE Policy files (optional)
If you intend to generate large key sizes, you will need two cryptographic JCE Policy files v 1.6.x or v 1.7.x or 1.8.x
(available from the Java web site). TheGetting Started section of this Help has instructions on what to do with the two
files (local_policy.jar and US_export_policy.jar).

If you see errors like "Invalid Key size", that is usually an indication that the JCE is not properly installed.

SafeNet Client CD
Follow the installation procedure for the SafeNet Client as described in the Installation Guide.

SafeNet JavaSP
When installing the SafeNet Client software, also choose the option to install SafeNet JSP. Instructions are provided in
the platform-specific pages, including instructions for installing SafeNet JSP for each operating system (files to
copy/replace, editing to perform, etc.) so that SafeNet Network HSM and SafeNet JSP can work with the JRE.

Note: Java Provider (JSP) - both GMC andGMAC are supported. "GmacAesDemo.java"
provides a sample for using GMAC with Java.

Java Parameter Specification class LunaGmacParameterSpec.java defines default values
recommended by the NIST specification.

Post-Installation Tasks

"Extractable" Option
The Luna provider provides an option tomake newly secret keys extractable from the HSM, via the
LunaSlotManager.setSecretKeysExtractable() method.

Some situations exist in which keys should be extractable but this method cannot be used; for example, when the Luna
provider is performing crypto operations for a TLS server1. We now provide a configuration option to enable this
behavior. Tomake secret keys extractable, add the following line to java.security:

1[because you cannot call this method from within your application and have it apply to the TLS server]

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 354

7 Java Interfaces

com.safenetinc.luna.provider.createExtractableKeys=true

This value will be read by the Luna provider on startup; to change the setting after the application has started, use the
LunaSlotManager method. Using that method overrides the setting in the file for that application, but does not overwrite
it permanently.

When Java, the SafeNet Client and SafeNet JSP are installed as directed, youmay then perform any integration
required for your own, or third-party Java application.

Using SafeNet JCE/JCA with 64-bit Libraries
If you are using SafeNet JCE/JCA with the 64-bit libraries for SafeNet Network HSM, youmust include the "-d64"
switch in the Java command-line.

For example: java -d64 -jar jMultitoken.jar

For most 64-bit platforms, 64-bit is supported. Some 64-bit platforms support the option of running in 32-bit mode), as a
backward compatibility feature.

If you use the 64-bit installation and do not use the "- d64" command-line switch in your Java command lines, the
system attempts (by default) to use the 32-bit library (which is not installed, because you installed 64-bit in this
example...), and the result is an error message complaining about the kernel model.

Using ECC Keys for TLS with Java 7
For optimal Java performance when using Elliptic Curve keys to perform TLS with Java 7, where those keys reside in
the HSM, youmust configure the SunEC security provider (sun.security.ec.SunEC) to be below the LunaProvider in
your java.security file.

We suggest that you not attempt to resolve a performance issue by having the LunaProvider as the default because
that would result in the symmetric keys also being used in the HSMwhich is not optimal for performance.

A Security Note for Java Developers
The SafeNet JSP is a Java API that is intended to be used as an interface between customer-written or third-party Java
applications and the SafeNet HSM. Managing security issues associated with the overall operational environment in
which the application is running, including the user interface, is the responsibility of the application.

A common example would be input and capture of user name and password. The application, or a set of organizational
procedures, is responsible for making the access control decision regarding whether the user has the necessary
permissions (at the organizational level) to access the HSM's services and thenmust provide protection for the
password as it is entered, and erasure frommemory after the operation is completed. The SafeNet JSP will control
access to the HSM based on the correct password being input from the application via the Loginmethod, but security
outside the HSM is your responsibility.

Non-standard ECDSA
The SafeNet provider maps the "ECDSA" signature algorithm to "NONEwithECDSA". The Java convention is to map it
to "SHA1withECDSA". This is noted here in case you wish to use it in provider inter-operability testing. This mapping is
noted in the Javadoc as well.

For comparison, "RSA" maps to "NONEwithRSA" while "DSA" maps to "SHA1withDSA".

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 355

7 Java Interfaces

SafeNet JSP Configuration
SafeNet JSP consists of a single JCA/JCE service provider, that allows a Java-based application to use SafeNet HSM
products for secure cryptographic operations. Please refer to the Javadocs accompanying the toolkit, for themost
current information regarding the SafeNet JSP packages and LunaProvider functionality.

Installation
Youmust acquire a Java JDK or JRE separately and install it before installing the SafeNet JSP. See theQuickStart
that camewith your software package.

In order to use the LunaProvider youmust place the jar file in your classpath. We recommend placing it in your
<jre>/lib/ext folder. In addition the JNI component, whichmay be a .dll or .so file depending on your system
architecture, should be placed in your library path.

Java -- Encryption policy files for unlimited strength ciphers
Additionally, youmight need to apply the unlimited strength ciphers policy. The unlimited strength ciphers policy files
can be downloaded from Oracle.

The US_export_policy.jar and local_policy.jar are to be copied to JAVA_HOME/jre/lib/security (or the equivalent
directory that applies to your setup).
[root@my-sa5client]# echo $JAVA_HOME
/usr/java/default
[root@my-sa5client]# cp -p local_policy.jar /usr/java/default/jre/lib/security/
[root@my-sa5client]# cp -p US_export_policy.jar /usr/java/default/jre/lib/security/

SafeNet Java Security Provider
In general, you should use the standard JCA/JCE classes andmethods to work with SafeNet HSMs. The following
sections provide examples of when youmay wish to use the special SafeNet methods.

Class Hierarchy
All public classes in the SafeNet Java crypto provider are included in the com.safenetinc.luna package or subpackages
of that package. Thus the full class names are (for example):

• com.safenetinc.luna.LunaSlotManager

• com.safenetinc.luna.provider.key.LunaKey

If your application is compliant with the JCA/JCE spec, you will generally not need to directly reference any SafeNet
implementation classes. Use the interfaces defined in the java.security packages instead. The exception is if you need
to perform an HSM-specific operation, such as modifying PKCS#11 attributes.

Throughout the rest of this document, the short form of the class names is used for convenience and readability. The
full class names (of SafeNet or other classes) are used only where necessary to resolve ambiguity.

Special Classes/Methods
The JCA/JCE interfaces were not designed with hardware security modules (HSMs) in mind and do not include
methods for managing aspects of a hardwaremodule. SafeNet JSP provides some additional functions in addition to
the standard JCA/JCE API.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 356

7 Java Interfaces

The LunaSlotManager class provides custommethods that allow someHSM-specific information to be retrieved. It
also provides a way to log in to the HSM if your application cannot make use of the standard KeyStore interface. For
details please check the Javadoc which comes with the product.

It is not always necessary to use the LunaSlotManager class. With proper use of the JCE API provided in SafeNet
JSP, your code can be completely hardware-agnostic.

The LunaKey class implements the Key interface and provides all of themethods of that class along with custom
methods for manipulating key objects on SafeNet hardware.

Note: Sensitive attributes cannot be retrieved from keys stored on SafeNet hardware. Thus
certain JCE-specifiedmethods (such as PrivateKeyRSA.getPrivateExponent()) will throw an
exception.

The LunaCertificateX509 class implements the X509Certificate methods along with custommethods for manipulating
certificate objects on SafeNet hardware.

Examples
The SafeNet JSP comes with several sample applications that show you how to use the Luna provider. The samples
include detailed comments.

To compile on windows without an IDE (administrator privileges may be required)
cd <SafeNet Network HSM install>/jsp/samples
javac com\safenetinc\luna\sample*.java

To run
java com.safenetinc.luna.sample.KeyStoreLunaDemo (or any other sample class in that package)

Authenticating to the HSM
In order to make use of an HSM, it is necessary to activate the device through a login. Depending on the security level
of the device, the login will require a plain-text password and/or a PED key.

The preferredmethod of logging in to themodule is through the Java KeyStore interface. The store type is “Luna” and
the password for the key store is the challenge for the partition specified.

KeyStore files for the Luna KeyStoremust be createdmanually. The content of the KeyStore file differs if you wish to
reference the partition by the slot number or label (preferred). Details of authenticating to the HSM via the KeyStore
interface are explained in the Javadoc for LunaKeyStore and in the KeyStoreLunaDemo sample application.

Keys in a Luna KeyStore cannot have individual passwords. Only the KeyStore password is used. If your HSM requires
PED keys to be presented for authentication and the partition is not already activated, loading the KeyStore will cause
the PED to prompt you to present this key.

Other than the KeyStore interface your applicationmay alsomake use of the LunaSlotManager class or by using a login
state created outside of the application through a utility called ‘salogin’. Use of salogin is strongly discouraged unless
you have a very specific need.

LunaKeyStoreMP is Deprecated
LunaKeyStoreMP is deprecated for SafeNet JSP, andmay be discontinued in a future release. LunaKeyStoreMP was
used in previous releases to allow logical partitioning of the key space on HSMs that have only one partition. This
allowed you to create a separateMP key store for each individual client that accessed the partition. Recent SafeNet

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 357

7 Java Interfaces

releases, however, support multiple partitions, and dedicating a partition per client is a superior solution for
management and security reasons.

Note: LunaKeyStoreMP is retained for backwards compatibility reasons only. Do not use
LunaKeyStoreMP when creating new applications.

Logging Out
Logging out of the HSM is performed implicitly when the application is terminated normally. Logging out of the HSM
while the application is running can be done with the LunaSlotManager class. Please note that any ephemeral (non-
persistent) key material present on the HSMwill be destroyed when the session is logged out. Because the link to the
HSMwill be severed, cryptographic objects that were created by the LunaProvider will no longer be usable. Attempting
to use these objects after logging out will result in undefined behaviour.

All key material which was persisted on the HSM (either through the KeyStore interface or using the proprietary Make
Persistent method) will remain on the HSM after a logout and will be accessible again when the application logs back in
to the HSM.

Keytool
The SafeNet JSP may be used in combination with Java’s keytool utility to store and use keys on a SafeNet HSM, see
"Using Java Keytool with SafeNet HSM" on page 370.

Cleaning Up
Keys that aremade persistent will continue to exist on the HSM until they are explicitly destroyed, or until the HSM is
reinitialized. Persistent keys that are no longer needed can be explicitly destroyed to free resources on the HSM.

Keys may be removed using the Keytool, or programmatically through the KeyStore interface or other methods
available through the API.

LunaSlotManager contains methods that report the number of objects that exist on the HSM. See the Javadoc for
LunaSlotManager for more information.

PKCS#11/JCA Interaction
Keys created using the SafeNet PKCS#11 API can be used with the SafeNet JSP; the inverse is also true.

Certificate Chains
The PKCS#11 standard does not provide a certificate chain representation. When a Java certificate chain is stored on a
SafeNet token, the certificates of the chain appear as individual objects when viewed through the PKCS#11 API. In
order for the LunaProvider to properly identify PKCS#11-created certificates as part of a chain attached to a private key,
the certificates must follow the labeling scheme described below.

Java Aliases and PKCS#11 Labels
The PKCS#11 standard defines a large set of object attributes, including the object label. This label is analogous to the
Object alias in a java KeyStore.

The SafeNet KeyStore key entry or a SafeNet KeyStore certificate entry will have a PKCS#11 object label exactly
equal to the Java alias. Similarly, a key created through PKCS#11 will have a Java alias equal to the PKCS#11 label.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 358

7 Java Interfaces

Because a java certificate chain cannot be represented as a single PKCS#11 object, the individual certificates in the
chain will each appear as individual PKCS#11 objects. The labels of these PKCS#11 objects will be composed of the
alias of the corresponding key entry, concatenated with "--certX", where 'X' is the index of the certificate in the java
certificate chain.

For example, consider a token that has a number of objects created through the Java API. The objects consist of the
following:

• A key entry with alias "signing key", consisting of a private key and a certificate chain of length 2

• A trusted certificate entry with alias "root cert"

• A secret key with alias "session key"

If all objects on the token were viewed through a PKCS#11 interface, 5 objects would be seen:

• A private key with label "signing key"

• A certificate with label "signing key--cert0"

• A certificate with label "signing key--cert1"

• A certificate with label "root cert"

• A secret key with label "session key"

Note: PKCS#11 labels (strings of ascii characters) and Java aliases (of the java.lang.String
type) are usually fully compatible, but problems can arise if non-printable characters are used.
Tomaintain compatibility between Java and PKCS#11, avoid embedding non-printable or non-
ascii characters in aliases or object labels.

RSA Cipher
Previously, by default, the SafeNet JSP RSA cipher mode used raw RSA X.509 encryption, with no padding.

For improved security and compatibility, default padding for RSA cipher has been changed from NoPadding to
PKCS1v1_5.

The JCPROV PKCS#11 Java Wrapper
This section describes how to install and use the JCPROV Java wrapper for the PKCS#11 API. It contains the
following topics:

• "JCPROV Overview" below

• "Installing JCPROV" on the next page

• "JCPROV Sample Programs" on page 361

• "JCPROV Sample Classes" on page 362

• "JCPROV API Documentation" on page 365

JCPROV Overview
JCPROV is a Java wrapper for the PKCS#11 API. JCPROV is designed to be as similar to the PKCS#11 API as the
Java language allows, allowing developers who are familiar with the PKCS#11 API to rapidly develop Java-based

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 359

7 Java Interfaces

programs that exercise the PKCS#11 API.

Note: JCPROV - at time of writing (August 2015) GMAC is supported, but GCM is not. Use
CK_AES_CMAC_PARAMS.java to define the GMAC operation. Implementation is the same
as for PKCS#11.

JDK compatibility
The JCPROV Java API is compatible with JDK 1.5.0 or higher.

The JCPROV library
The JCPROV library is implemented in jcprov.jar, under the namespace safenet.jcprov. It is accompanied by a
shared library that provides the nativemethods used to access the appropriate PKCS#11 library. The name of the
shared library is platform dependent, as follows:

Operating system Shared library

Windows (32 and 64 bit) jcprov.dll

Linux libjcprov.so

Solaris libjcprov.so

HP-UX libjcprov.sl

AIX libjcprov.so

Installing JCPROV
Use the SafeNet Client Installer to install the JCPROV software (runtime and SDK packages). The software is
installed in the location specified in the following table:

Operating system Installation location

Windows C:\Program Files\safenet\lunaclient\jcprov

Linux /usr/safenet/lunaclient/jcprov

Solaris /opt/safenet/lunaclient/jcprov

HP-UX /opt/safenet/lunaclient/jcprov

AIX /usr/safenet/lunaclient/jcprov

The installation includes a samples subdirectory () and a javadocs subdirectory ().

Changing the Java JNI libraries (AIX only)
The Java VM on AIX does not support mixedmode JNI libraries. Mixedmode libraries are shared libraries that provide
both 32-bit and 64-bit interfaces. It is therefore essential that you select the correct JNI library to use with your Java
VM.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 360

7 Java Interfaces

CAUTION: When JCPROV is installed, links are automatically created to use the 32-bit
versions of the JNI libraries. You need to update the links if you are using a 64-bit operating
system.

To configure the JNI library for use with a 32-bit Java VM
1. Ensure that the /usr/safenet/lunaclient/jcprov/lib/libjcprov.a symbolic link points to a 32-bit version of the library

(libjcprov_32.a), for example /usr/safenet/lunaclient/jcprov/lib/libjcprov_32.a.

2. Ensure that the /usr/safenet/lunaclient/jcprov/lib/libjcryptoki.a symbolic link points to a 32-bit version of the
library(libjcryptoki_32.a), for example /usr/safenet/lunaclient/jcprov/lib/libjcryptoki_32.a.

To configure the JNI library for use with a 64-bit Java VM
1. Ensure that the /usr/safenet/lunaclient/jcprov/lib/libjcprov.a symbolic link points to a 64-bit version of the library

(libjcprov_64.a), for example /usr/safenet/lunaclient/jcprov/lib/libjcprov_64.a.

2. Ensure that the /usr/safenet/lunaclient/jcprov/lib/libjcryptoki.a symbolic link points to a 64-bit version of the
library (libjcryptoki_64.a), for example /usr/safenet/lunaclient/jcprov/lib/libjcryptoki_64.a.

JCPROV Sample Programs
Several sample programs are included to help you become familiar with JCPROV. The binaries for the sample
programs are included in the jcprovsamples.jar file. Youmust compile the binaries before you can use the sources
provided.

Compiling and running the JCPROV sample programs

CAUTION: You require JDK 1.5.0 or newer to compile the JCPROV sample programs.

It is recommended that you compile the samples in their installed locations, so that the path leading to the samples
directory in the installation location will allow them to be executed as documented below.

Prerequisites
For best results, perform the following actions before attempting to compile the sample programs:

• add jcprov.jar to yourCLASSPATH environment variable

• add a path to theCLASSPATH environment variable that allows JCPROV to use the safenet.jcprov.sample
namespace. This is required since all of the applications are registered under this namespace.

To compile the JCPROV sample programs on UNIX/Linux
1. Create a temporary compile directory.

mkdir –p safenet/jcprov/samples

2. Copy the sample program andmakefile into the temporary compile directory.
cp <jcprov_installation_directory>/jcprov/samples/* safenet/jcprov/samples

3. Set theCLASSPATH environment variable to point to jcprov.jar and the root path for the sample programs.
export CLASSPATH=<jcprov_installation_directory>/jcprov.jar:`pwd`

4. Change directory to the sample programs path.
cd safenet/jcprov/samples

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 361

7 Java Interfaces

5. Use the javac program to compile the examples.
javac GetInfo.java

6. Use the java program to run the samples.
java safenet.jcprov.samples.GetInfo -info

To compile the JCPROV sample programs on Windows
1. Set theCLASSPATH environment variable to point to jcprov.jar and the root path for the sample programs:

C:\> set “CLASSPATH= C:\Program Files\safenet\lunaclient\jcprov\jcprov.jar; C:\program
files\safenet\jcprov\samples”

2. Use the javac program to compile the examples:
C:\Program Files\safenet\lunaclient\jcprov\samples> javac GetInfo.java

3. Use the java program to run the samples:
C:\Program Files\safenet\lunaclient\jcprov\samples> java safenet.jcprov.samples.GetInfo -info

JCPROV Sample Classes
JCPROV provides the following sample classes. The sample classes are located in the <jcprov_installation_
directory>/samples directory.

DeleteKey
Demonstrates the deletion of keys.

Usage
java safenet.jcprov.sample.DeleteKey -keyType <keytype> -keyName <keyname> [-slot <slotId>] [-password
<password>]

Parameters

Parameter Description

-keytype Specifies the type of key you want to delete. Enter this parameter followed by one of the following
supported key types:
• des - single DES key
• des2 - double-length, triple-DES key
• des3 - triple-length, triple-DES key
• rsa - RSA key pair

-keyName Specifies the name (label) of the key you want to delete. Enter this parameter followed by the name
(label) of the key you want to delete.

-slot Specifies the slot for the HSM or partition that contains the key you want to delete. Optionally enter
this parameter followed by the slot identifier for the HSM or partition that contains the key you want
to delete. If this parameter is not specified, the default slot is used.
Default: 1

-password Specifies the password for the slot. Optionally enter this parameter followed by the slot password to
delete a private key.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 362

7 Java Interfaces

EncDec
Demonstrates encryption and decryption operations by encrypting and decrypting a string.

Usage
java safenet.jcprov.sample.EncDec -keyType <keytype> -keyName <keyname> [-slot <slotId>] [-password
<password>]

Parameters

Parameter Description

-keytype Specifies the type of key you want to use to perform the encryption/decryption operation. Enter this
parameter followed by one of the following supported key types:
• des - single DES key
• des2 - double-length, triple-DES key
• des3 - triple-length, triple-DES key
• rsa - RSA key pair

-keyName Specifies the name (label) of the key you want to use to perform the encryption/decryption operation.
Enter this parameter followed by the name (label) of the key you want to use to perform the
encryption/decryption operation.

-slot Specifies the slot for the HSM or partition that contains the key you want to use to perform the
encryption/decryption operation. Optionally enter this parameter followed by the slot identifier for the
HSM or partition that contains the key you want to use to perform the encryption/decryption
operation. If this parameter is not specified, the default slot is used.
Default: 1

-password Specifies the password for the slot. Optionally enter this parameter followed by the slot password to
encrypt/decrypt a private key.

GenerateKey
Demonstrates the generation of keys.

Usage
java safenet.jcprov.sample.GenerateKey -keyType <keytype> -keyName <keyname> [-slot <slotId>] [-password
<password>]

Parameters

Parameter Description

-keytype Specifies the type of key you want to generate. Enter this parameter followed by one of the following
supported key types:
• des - single DES key
• des2 - double-length, triple-DES key
• des3 - triple-length, triple-DES key
• rsa - RSA key pair

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 363

7 Java Interfaces

Parameter Description

-keyName Specifies the name (label) of the key you want to generate. Enter this parameter followed by the
name (label) of the key you want to generate.

-slot Specifies the slot for the HSM or partition where you want to generate the key. Optionally enter this
parameter followed by the slot identifier for the HSM or partition where you want to generate the key.
If this parameter is not specified, the default slot is used.
Default: 1

-password Specifies the password for the slot. Optionally enter this parameter followed by the slot password to
generate a private key.

GetInfo
Demonstrates the retrieval of slot and token information.

Usage
java safenet.jcprov.sample.GetInfo {-info | -slot [<slotId>] | -token [<slotId>]}

Parameters

Parameter Description

-info Retrieve general information.

-slot Retrieve slot information for the specified slot. Enter this parameter followed by the slot identifier for the
slot you want to retrieve information from. If <slotId> is not specified, information is retrieved for all
available slots.

-token Retrieve token information for the HSM or partition in the specified slot. Enter this parameter followed by
the slot identifier for the HSM or partition you want to retrieve information from. If <slotId> is not
specified, information is retrieved for all available slots.

Threading
This sample program demonstrates different ways to handlemulti-threading.

This program initializes the Cryptoki library according to the specified lockingmodel. Then a shared handle to the
specified key is created. The specified number of threads is started, where each thread opens a session and then
enters a loop which does a triple DES encryption operation using the shared key handle.

It is assumed that the key exists in slot 1, and is a Public Token object.

Usage
java ...Threading -numThreads <numthreads> -keyName <keyname> -locking { none | os | functions } [-v]

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 364

7 Java Interfaces

Parameters

Parameter Description

-numthreads Specifies the number of threads you want to start. Enter this parameter followed by an integer
that specifies the number of threads you want to start.

-keyName Specifies the triple-DES key to use for the encryption operation. Enter this parameter followed by
the name (label) of the key to use for the encryption operation.

-locking Specifies the lockingmodel used when initializing the Cryptoki library. Enter this parameter
followed by one of the following lockingmodels:
• none - do not use locking when initializing the Cryptoki library. If you choose this option,

some threads should report failures.
• os - use the native operating systemmechanisms to perform locking.
• functions - use Java functions to perform locking

-v Specifies the password for the slot. Optionally enter this parameter followed by the slot
password to generate a private key.

JCPROV API Documentation
The JCPROV API is documented in a series of javadocs. The documentation is located in the <jcprov_installation_
directory>/javadocs directory.

Java or JSP Errors
In the process of using our JSP (Java Service Provider) or programming for Java clients, youmight encounter a variety
of errors generated by various levels of the system. In rare cases thosemight be actual problems with the system, but
in the vast majority of cases the errors are the system (or the Client-side libraries) telling you that you (or your
application) have done something "wrong". In other words, the error messages are guidance to ensure that your actions
and your programs are giving the system what it needs (in the right order and format) to complete the tasks that you ask
of it.

Keep inmind that there are several levels involved. The SafeNet appliance and its HSM keycard have both software
and firmware built in. Among other things, the system software handles the system side of communication between
you (either as administrator or as Client) and the HSM on the appliance. In general, a client-side program (or
programmer) would not encounter error messages directly from the system. If an error condition arises on the system,
themost likely visibility would be error messages in the system logs - viewed by the appliance administrator - or else
client-sidemessages based upon the interaction of the client-side software (ours and yours) with the appliance.

On the client side, the JSP and any Java programs that you use would be overlaid on, and using, the SafeNet library,
which is an extended version of PKCS#11, customized tomake use of our HSM (the standard itself and the cryptoki
library are oriented toward in-software implementation of cryptographic functions, with some generic support of generic
HSM functions, leaving room for each HSM supplier to support their own special functions by extending the standard).
PKCS#11 is an RSA Laboratories cryptographic standard, and our libraries are a C-language implementation of that
standard. You can view all that is known about PKCS #11 error conditions andmessages at the RSA website.

See "Library Codes" on page 1 for a summary of error codes and their meanings, which includes the SafeNet
extensions to the PKCS#11 standard that are specific to our HSM. Note that "error codes" do not usually indicate a
problem with the appliance or HSM - they indicate an exception condition has been encountered, possibly because you

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 365

http://www.rsa.com/rsalabs/node.asp?id=2133

7 Java Interfaces

(or your application) stopped/canceled a requested action before it could complete, provided incorrect or incomplete or
wrongly-formatted input data, and so on, or possibly because a network connection has been disrupted, power has
failed, or any of a variety of situations has been detected.

The JSP and your Java programming are overlaid on top of the PKCS#11 and SafeNet libraries. An error reported by a
Java applicationmight refer to a problem at the Java or JSP level, or the error might have been passed through from a
lower level.

If you receive a cryptic error that looks something like:
Exception in thread "main"
com.safenetinc.crypto.LunaCryptokiException: function 'C_Initialize' returns 0x30

then this error has been passed through from a lower layer and is not a Java or JSP error. You should look in the Error
Codes page (link above) or in the PKCS#11 standard for themeaning of any error in a similar format.

In general, we wrap cryptoki exception codes. Most exceptions thrown by the JSP are in accordance with the
specification. Check the Javadoc for the API call that threw the exception.

• LunaException is used to report a LunaProvider-specific exception.

• LunaCryptokiException reports errors returned by the HSM. Thosemight be wrapped in other Exceptions

Re-Establishing a Connection Between Your Java
Application and SafeNet Network HSM
The following snippet of java code re-establishes a connection between a Java Application and SafeNet Network HSM
in the event of a disconnect (for example, firewall rules, network issues).

Note: Stop all existing crypto operations before performing the reconnect.

public void reconnectHsmServer() {
 LunaSlotManager lsm = LunaSlotManager.getInstance();
 lsm.reinitialize();
 lsm.login(“<HSM partition password>”);
}

Note: The reinitialize() call is a disruptive call. It unloads and reloads the dll, in order to perform
a cleanup and refresh. When reinitialize() is called, there are no safe API methods that may be
called and any calls in progress will result in undefined behaviour, leading, most-likely, to a JVM
crash. Before calling reinitialize(), ensure that all threads making use of the API are halted or
stopped, and that no other calls aremade until reinitialize() has completed.

Recovering From the Loss of All HA Members
The reinitializemethod of the LunaSlotManager class takes the role of the PKCS#11 functions C_Finalize andC_
Initialize. It is intended to be used when a complete loss of communication happens with all themembers of your High
Availability (HA) group.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 366

7 Java Interfaces

This section describes the situations in which you should use this method, the effect this method has on a running
application, and how to use this method safely. It is assumed that the auto-insert (auto-recovery) features of the HA
group are enabled.

You should read this section if you are developing an application that uses the LunaProvider in an environment that
leverages an HA group of SafeNet Network HSM appliances, so that you can safely recover an entire HA group.

When to Use the reintialize Method
When using the high-availability (HA) features of SafeNet Network HSM, the auto-insert (auto-recovery) feature will
resolve situations where connectivity is lost to a subset of members for a brief time. However, if you lose connection to
all members then the connection cannot be automatically recovered. Finalizing the library and initializing it again is the
only way to recover other than restarting the application.

Why the Method Must Be Used
In an HA group, we rely on having at least onemember present in order to maintain state. If all of themembers have
been lost, then we cannot make any determination of whichmember has a known good state. Also, when a connection
to amember is lost, the authenticated state is lost. When an individual member returns, we can use the authenticated
state from another member to authenticate to the one that has returned. When all members are lost, then the
authenticated state is lost on all members.

What Happens on the HSM
The Network Trust Link Service (NTLS) on the HSM appliance is responsible for cleaning up any cryptographic
resources, such as session objects, and cryptographic operation contexts when a connection to the client is lost. This
happens when the socket closes.

Effect on Running Applications
All resources created within the LunaProvider must be treated as junk after the library is finalized. Sessions will no
longer be valid, session objects will point to non-existent objects or worse to a wrong object, and
Signature/Cipher/Mac/etc objects will have invalid data.

Even LunaKey objects, which represent persistent objects, may contain invalid data. When the virtual slot is
constructed in the library, the virtual object table is built from the objects present on each individual member. There is no
guarantee that objects will have the same handle from one initialization to the next. This is true from themoment the
connection to the group is severed. All these resources must be released before calling the reinitializemethod. Beyond
causing undesirable behavior when used, if these objects are garbage collected after cryptographic operations resume,
they can result in the deletion of new objects or sessions.

Using the Method Safely
The first indication that all communications may have been lost with the group is a LunaException reporting an error
code of 0x30 (Device Error). Other possible error codes that can indicate this status are 0xE0 (Token not present) and
0xB3 (Session Handle invalid). The LunaException class does not provide the error code as a discrete value and you
will have to parse themessage string to determine this value.

At this point, you should validate that the group has been lost. The com.safenetinc.luna.LunaHAStatus object is best
suited for this. Your application should know the slot number of the HA slot that you are using because it may not be
able to query this information from the label when the slot is missing.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 367

7 Java Interfaces

Example
LunaHAStatus status = new LunaHAStatus(haSlotNumber);

You can query the object for detailed information or just use the isOK()method to determine if the group has been lost.
The isOK()method will return true if all members are still present. If all members are gone, an exception will be thrown.

If no application is thrown, the application should be able to proceed operating, and any individual members of the HA
group that have been lost will be recovered by the library. Further details on failedmembers can be queried through the
LunaHAStatus object.

In many highly threaded applications, such as web applications, it is desirable to have a singleton, which is responsible
for keeping track of the health of the HSM connection. This can be done by having worker threads report information to
this singleton, by having a specific health check thread, or through a combination of the two.

Once the error state is discovered, all worker threads should be stopped or allowed to return an error. It may take up to
40 seconds from the time the group was lost for all threads to discover that there is an error. It can take 20 seconds for
any given command to time out as a result of network failure. Once this happens, new commands will not be sent to
that HSM, but a commandmay have just been sent and that commandwill have its own 20-second timeout. As
mentioned above, in the section on application effects, all of the objects created or managed by the LunaProvider must
be considered at this point to contain junk data. Operating after recovery with this junk data can cause undesired
effects. This means all keys, signature, cipher, Mac, KeyGenerator, KeyPairGenerator, X509Certificate, and similar
objects must be released to the garbage collector. Instances of most non-SPI (LunaAPI, LunaSlotManager,
LunaTokenManager, etc.) objects do not pose a problem, but any instances of LunaSession held in the application
during the course of the reinitialize can cause problems if they are returned to the session pool after the reinitialization
takes place.

Cryptographic processing in the application should be halted until connection with the HSMs is back to a known good
state. It may be appropriate to hold operations in a queue for processing later or to return anOut of Servicemessage.

Once the objects have been released and no further processing will occur, the application should attempt recovery of
the connection. This is done through the com.safenetinc.luna.LunaSlotManager.reinitializemethod. This method
will first clear session objects held within the provider before finalizing the library. After the library is finalized, it will
initialize it again by invoking theC_Initializemethod. This method will establish a connection with all the HSMs if
possible. The same isOK()method of LunaHAStatus can be used to determine if the group has been recovered
successfully.

It is also important to only have a single thread call the reinitializemethod. Whenmultiple threads try to unload or load
the library at the same time, errors can occur.

Elliptic Curve Problem in SUN JDK 1.6 and earlier
If you are using a version of SUN JDK earlier than 6 (JDK 1.6), avoid using these specific elliptic curves:

• secp160k1

• secp192k1

• secp224k1

• secp256k1

• sect233k1

• sect239k1

• sect283k1

• sect409k1

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 368

7 Java Interfaces

• sect571k1

• X9.62 c2pnb208w1

Due to a Java bug, those curves can result in errors if they (validly) have coefficients of zero.

If youmust use those curves, then update to SUN Java 1.6, which fixes the problem.

The bug is acknowledged on the SUN website, here:

http://bugs.sun.com/bugdatabase/view_bug.do;jsessionid=1b1e7de9a9bde55460e50e7fbed5?bug_id=6542846

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 369

http://bugs.sun.com/bugdatabase/view_bug.do;jsessionid=1b1e7de9a9bde55460e50e7fbed5?bug_id=6542846

7 Java Interfaces

Using Java Keytool with SafeNet HSM
This page describes how to use the Java KeyTool application with the LunaProvider.

Limitations
The following limitations apply:

• You cannot use the importkeystore command tomigrate keys from a Luna KeyStore to another KeyStore.

• Private keys cannot be extracted from the KeyStore unless you have the Key Export model of the HSM.

• By default secret keys created with the LunaProvider are non-extractable.

The example below uses a KeyStore file containing only the line “slot:1”. This tells the Luna KeyStore to use the token
in slot 1.

For information on creating keys through Key Generator or Key Factory classes please see the LunaProvider Javadoc
or the JCA/JCE API documentation.

Keys (with self signed certificates) can be generated using the keytool by specifying a valid Luna KeyStore file and
specifying the KeyStore type as “Luna”. The password presented to authenticate to the KeyStore is the challenge
password of the partition.

Example
keytool –genkeypair –alias myKey –keyalg RSA –sigalg SHA256withRSA –keystore keystore.luna –
storetype Luna
Enter keystore password:
What is your first and last name?
[Unknown]: test
What is the name of your organizational unit?
[Unknown]: codesigning
What is the name of your organization?
[Unknown]: SafeNet Inc
What is the name of your City or Locality?
[Unknown]: Ottawa
What is the name of your State or Province?
[Unknown]: ON
What is the two-letter country code for this unit?
[Unknown]: CA
Is CN=test, OU=codesigning, O=SafeNet Inc, L=Ottawa, ST=ON, C=CA correct?
[no]: yes
Enter key password for <myKey>
(RETURN if same as keystore password):

Keytool Usage and Examples
The LunaProvider is unable to determine which PKCS#11 slot to use without providing a keystore file. This file can be
manually created to specify the desired slot by either the slot number or partition label. The naming of the files is not
important - only the contents.

The keytool examples below refer to a keystore file named bylabel.keystore. Its content is just one line:

tokenlabel:a-partition-name

where a-partition-name is the name of the partition you want the Java client to use.

Here is the (one line) content of a keystore file that specifies the partition by slot number:

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 370

7 Java Interfaces

slot:1

where 1 is the slot number of the partition you want the Java client to use.

To test that the Java configuration is correct, execute:

my-sa6client:~/luna-keystores$ keytool -list -v -storetype Luna -keystore
bylabel.keystore

The system requests the password of the partition and shows its contents.

Here is a sample command to create an RSA 2048 bit key with SHA256withRSA self-signed certificate. This example
uses java 6, other versions might be slightly different.

keytool -genkeypair -alias keyLabel -keyalg RSA -keysize 2048 -sigalg SHA256withRSA -storetype Luna -keystore
bylabel.keystore -validity 365
Enter keystore password:
What is your first and last name?
[Unknown]: mike

What is the name of your organizational unit?
[Unknown]: appseng

What is the name of your organization?
[Unknown]: safenet

What is the name of your City or Locality?
[Unknown]: ottawa

What is the name of your State or Province?
[Unknown]: on

What is the two-letter country code for this unit?
[Unknown]: ca

Is CN=mike, OU=appseng, O=safenet, L=ottawa, ST=on, C=ca correct?
[no]: yes

Enter key password for <keyLabel>
(RETURN if same as keystore password):

With the Luna provider there is no concept of a key password and anything entered is ignored.

The following is amore elaborate sequence of keytool usage where the final goal is to have the private key generated in
the HSM through keytool “linked” to its certificate.

Import CA certificate
It is mandatory to import the CA certificate – keytool verifies the chain before importing a client certificate:
my-sa5client:~/luna-keystores$ keytool -importcert -storetype Luna -keystore bylabel.keystore -
alias root-projectca -file project_CA.crt

It is not required to import this certificate in the Java default cacerts keystore.

Generate private key
Generate the private key. It is NOT important that the sigalg specifiedmatches the one used by the CA. You can also
haveOU, O, L, ST, and C different from the ones in the CA certificate.
my-sa6client:~/luna-keystores$ keytool -genkeypair -alias java-client2-key -keyalg RSA -keysize
2048 -sigalg SHA256withRSA -storetype Luna -keystore bylabel.keystore
Enter keystore password:
What is your first and last name?
[Unknown]: java-client2
What is the name of your organizational unit?
[Unknown]: SE

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 371

7 Java Interfaces

What is the name of your organization?
[Unknown]: SFNT
What is the name of your City or Locality?
[Unknown]: bgy
What is the name of your State or Province?
[Unknown]: bg
What is the two-letter country code for this unit?
[Unknown]: IT
Is CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT correct?
[no]: yes
Enter key password for <java-client2-key>
(RETURN if same as keystore password):

Verify that the private key is in the partition:
my-sa6client:~/luna-keystores$ keytool -list -v -storetype Luna -keystore bylabel.keystore
Enter keystore password:
Keystore type: LUNA
Keystore provider: LunaProvider
Your keystore contains 2 entries
Alias name: root-projectca
Creation date: Oct 4, 2012
Entry type: trustedCertEntry
Owner: EMAILADDRESS=manager@computer.org, CN=project CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=manager@computer.org, CN=project CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 1
Valid from: Thu Oct 04 09:02:00 CEST 2012 until: Tue Oct 04 09:02:00 CEST 2022
Certificate fingerprints:
 MD5: A2:15:4F:94:70:2B:D2:F7:C0:96:B1:47:F2:1D:03:E9
 SHA1: B3:4A:68:0A:8D:12:39:86:11:CE:EF:22:1B:D1:DE:8D:E9:19:2B:F4
 Signature algorithm name: SHA256withRSA
 Version: 3

Alias name: java-client2-key
Creation date: Oct 4, 2012
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 506d42dd
Valid from: Thu Oct 04 10:03:41 CEST 2012 until: Wed Jan 02 09:03:41 CET 2013
Certificate fingerprints:
 MD5: 7A:37:72:6B:8A:05:B6:49:91:70:0F:C4:04:1F:69:D9
 SHA1: 05:CD:9F:A5:37:0B:A6:A3:65:24:56:40:5E:29:2D:95:2D:53:8F:5F
 Signature algorithm name: SHA256withRSA
 Version: 3

Create the CSR
Create the CSR to be submitted to the CA.
my-sa5client:~/luna-keystores$ keytool -certreq -alias java-client2-key -file client2-pro-
jectca.csr -storetype Luna -keystore bylabel.keystore
Enter keystore password:

Now have the CSR signed by the CA. Have the issued certificate exported to include the certificate chain. Without the
chain, keytool fails with the error:

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 372

7 Java Interfaces

java.lang.Exception: Failed to establish chain from reply

If you do not have the chain, you can use the steps in the section below to build the chain yourself.

To translate a PKCS#7 exported certificate from DER format to PEM format use the following:
my-sa5client $ openssl pkcs7 -inform der -in Luna_Key.p7b -outform pem -out Luna_Key-pem.p7b

Microsoft CA exports certificates with chain only in PKCS#7 PEM encoded format.

Import client certificate
Now import the client certificate:
user@myserver:~/luna-keystores$ keytool -importcert -storetype Luna -keystore bylabel.keystore -
alias java-client2-key -file java-client2.crt
Enter keystore password:
Certificate reply was installed in keystore

Ensure that it is linked to the private key generated previously – the chain length is not 1 (“Certificate chain length: 2)
user@myserver:~/luna-keystores$ keytool -list -v -storetype Luna -keystore bylabel.keystore
Enter keystore password:
Keystore type: LUNA
Keystore provider: LunaProvider
Your keystore contains 2 entries
Alias name: root-projectca
Creation date: Oct 4, 2012
Entry type: trustedCertEntry
Owner: EMAILADDRESS=manager@computer.org, CN=project CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=manager@computer.org, CN=project CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 1
Valid from: Thu Oct 04 09:02:00 CEST 2012 until: Tue Oct 04 09:02:00 CEST 2022
Certificate fingerprints:
 MD5: A2:15:4F:94:70:2B:D2:F7:C0:96:B1:47:F2:1D:03:E9
 SHA1: B3:4A:68:0A:8D:12:39:86:11:CE:EF:22:1B:D1:DE:8D:E9:19:2B:F4
 Signature algorithm name: SHA256withRSA
 Version: 3

Alias name: java-client2-key
Creation date: Oct 4, 2012
Entry type: PrivateKeyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=manager@computer.org, CN=project CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 5
Valid from: Thu Oct 04 10:07:00 CEST 2012 until: Fri Oct 04 10:07:00 CEST 2013
Certificate fingerprints:
 MD5: 4B:F0:9E:BC:EB:6A:88:2B:87:3A:76:35:7C:DE:4B:B4
 SHA1: F1:0C:BC:E3:A1:97:E4:8B:24:2D:44:43:7A:EA:71:52:B3:C3:20:D7
 Signature algorithm name: SHA256withRSA
 Version: 3
Certificate[2]:
Owner: EMAILADDRESS=manager@computer.org, CN=project CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=manager@computer.org, CN=project CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 1

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 373

7 Java Interfaces

Valid from: Thu Oct 04 09:02:00 CEST 2012 until: Tue Oct 04 09:02:00 CEST 2022
Certificate fingerprints:
 MD5: A2:15:4F:94:70:2B:D2:F7:C0:96:B1:47:F2:1D:03:E9
 SHA1: B3:4A:68:0A:8D:12:39:86:11:CE:EF:22:1B:D1:DE:8D:E9:19:2B:F4
 Signature algorithm name: SHA256withRSA
 Version: 3

How to build a certificate with chain ...
When you receive the client certificate without the chain, it is possible to build a PKCS#7 certificate that includes the
chain (and then feed it to keytool -importcert). In short, the “single” certificates without the chain can be “stacked”
together by manually editing a PEM cert file; this PEM cert file can then be translated into a PKCS#7 cert. How? Like
this:

1. Prerequisites. Have all the certs in .crt format. The cert in this format is represented as an ASCII file starting
with the line
-----BEGIN CERTIFICATE-----
and ending with
-----END CERTIFICATE-----
For example, if the client cert is issued by a subCA and the subCA is signed by a root CA, you will have 3
cert files – the client cert, the subCA cert, and the root CA cert. If the certs are not in .crt format, openssl can
be used to transform the format that you have into .crt format. See notes below.

2. Open a new text file, calling it, for example, cert-with-chain.crt. Insert into this file the content of the cer-
tificates in the chains. For the above example, youmust insert FIRST the client cert, THEN the subCA cert,
THEN the root CA cert. The content of the file would then resemble the following:
-----BEGIN CERTIFICATE-----
 <-- client cert goes here
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----

<-- subCA cert goes here
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----

<-- root CA cert goes here
-----END CERTIFICATE-----

3. Use the following openssl command to convert the new certificate with chain, that you just created above,
to a PKCS#7 certificate with chain:
my-sa6 $ openssl crl2pkcs7 -nocrl -certfile HSM_Luna-manual-chain.crt -out
HSM_Luna-manual-chain.p7b -certfile root_CA.crt

Keytool is then able to import this .p7b certificate into the Luna keystore and correctly validate the chain.

Additional minor notes
1. Command to add a CA to the default CA cert store “cacerts”:

root@myserver:~# keytool -importcert -trustcacerts -alias root-projectca -
file /home/project/luna-keystores/project_CA.crt -keystore /etc/java-6-sun-
/security/cacerts

2. Use the following openssl command to convert a PKCS#7 certificate DER-encoded into a PKCS#7 PEM-
encoded certificate:

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 374

7 Java Interfaces

user@myserver:~/tmp/$ openssl pkcs7 -inform der -in java-client2.p7b -out
java-client2-pem.p7b

3. Use the following openssl command to convert a PKCS#7DER-encoded certificate into a .crt PEM cer-
tificate :
user@myserver:~/tmp/$ openssl pkcs7 -print_certs -inform der -in project_
CA.p7b -out project_CA-p7-2-crt.crt

4. Use the following openssl command to convert a PEM certificate with chain to a PKCS#7with chain:
user@myserver:~/tmp/$ openssl crl2pkcs7 -nocrl -certfile HSM_Luna-manual-
chain.crt -out HSM_Luna-manual-chain.p7b -certfile project_CA.crt

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 375

7 Java Interfaces

JSP Dynamic Registration Sample
Youmay prefer to dynamically register the SafeNet provider in order to avoid possible negative impacts on other
applications running on the samemachine. Using dynamic registration also allows you to keep installation as
straightforward as possible for your customers.

This sample code shows an example of dynamic registration with SafeNet's SafeNet provider. The SafeNet provider is
registered in position 2, ensuring that the "SUN" provider is still the default. If you want the SafeNet provider to be used
when no provider is explicitly specified, it should be registered at position 1.

Sample Code
try {
 com.safenetinc.luna.LunaSlotManager.getInstance().login("<HSM Partition Password>");
 java.security.Provider provider = new com.safenetinc.luna.provider.LunaProvider();
 // removing the provider is only necessary if it is already registered
 // and you want to change its position
 java.security.Security.removeProvider(provider.getName());
 java.security.Security.insertProviderAt(provider, 2);
 com.safenetinc.luna.LunaSlotManager.getInstance().logout();
} catch (Exception e) {
 System.out.println("Exception caught during loading of the providers: "
 + ex.getMessage());
}

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 376

8
Microsoft Interfaces

This chapter describes theMicrosoft interfaces to the PKCS#11 API. It contains the following topics:

• "The SafeNet CSP Registration Tool and Utilities" below

• "KSP for CNG" on page 382

• "SafeNet CSP Calls and Functions" on page 388

The SafeNet CSP Registration Tool and Utilities
This section describes how to use the SafeNet CSP registration tool and related utilities to configure the SafeNet HSM
client to use a SafeNet HSM withMicrosoft Certificate Services. Youmust be the Administrator or amember of the
Administrators group to run the SafeNet CSP tools.

The SafeNet CSP can be used by any application that acquires the context of the SafeNet CSP. All users who login
and use the applications that acquired the context have access to the SafeNet CSP. After you register the SafeNet
HSM partitions with SafeNet CSP, your CSP and KSP code should work in the samemanner whether our HSM (crypto
provider) is selected, or the default provider is used.

Note: The SafeNet CSP is an optional installation. It is installed by default in <luna_client_
install_dir>/CSP. If the CSP is not installed, re-run the installer.

The Keymap Utility
Use the keymap utility if you have previously been using another provider (with its keys in the SafeNet HSM) and wish
tomigrate toMS CSP keeping your established keys. The keymap utility simply creates on the SafeNet HSM the data
object that MS CSP expects, which in turnmakes your existing keys available to MS CSP. See <luna_client_install_
dir>/CSP/keymap.exe.

The ms2Luna Utility
Use thems2Luna utility if you already haveMS CSP in use with software key storage and you now wish to continue
with your keys held on the SafeNet HSM. See <luna_client_install_dir>/CSP/ms2luna.exe.

The CSP Registration Tool
You can use the CSP registration tool (<luna_client_install_dir>/CSP/register.exe) to perform the following functions:

• register HSM partitions for use with the SafeNet CSP. The password for each HSM Partition is secured such that
only the user for which the password was secured is able to un-secure it. See "Registering Partitions" on the next
page

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 007-011302-014Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 377

8 Microsoft Interfaces

• register which non-RSA cryptographic algorithms you want performed in software only. See "Registering the
Cryptographic Algorithms to be Performed in Software" on page 380

• enable key counting in KSP/CSP. See "Enabling Key Counting" on page 381.

Command Syntax
register.exe [/partition | /algorithms | /library | /usagelimit] [/highavailability] [/strongprotect] [/cryptouser] [/?]

Parameter Shortcut Description

/partition /p Register a partition and it's encrypted challenge. You are prompted through the required
steps to select and register a SafeNet HSM partition.
This is the default option. If you type registerwith no additional parameters, then
/partition is assumed. For example, if you type register /highavail or register
/strongprotect, then /partition is invoked and the additional option that you selected
(i.e., /highavail or /strongprotect) is run along with it . That is, typing register
/highavail is the same as typing register /partition /highavail.

/highavail /h Register only high availability (HA) partitions.

/strongprotect /s Strongly protect the challenge for registered partition

/algorithms /a Register the desired software ONLY algorithms

/library /l Register CSP library and signature in the registry

/usagelimit /u Register CSP RSA key maximum usage limit

/cryptouser /c UseCSP as Crypto User

Registering Partitions
The syntax used to register partitions depends on whether the partitions use high availability (HA) or not, as detailed in
the following procedures.

To register a standard HSM partition
1. Enter the following command and respond to the prompts:

2. C:\Program Files\SafeNetLunaClient\CSP> register

For example:
**
SafeNet Luna CSP, Partition Registration
Protect the HSM's challenge for the selected partitions.
NOTE:
This is a WEAK protection of the challenge!!
After you have configured all applications that will use
the Luna CSP, and run them once, you MUST run:
register /partition /strongprotect *
to strongly protect the registered challenges!!
**
This procedure is a destructive procedure and will completely replace
any previous settings!!
Do you wish to continue?: [y/n]

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 378

8 Microsoft Interfaces

Do you want to register the partition named 'nes'? [y/n]:
Please enter the SafeNet Network HSM challenge for the partition 'nes' :
Success registering the ENCRYPTED challenge for partition 'nes'.
Only the Luna CSP will be able to use this data!
Registered 1 partition(s) for use by the Luna CSP!

All available Partitions are presented for you to register or not.

3. Install and/or configure your application(s).

4. Run each of your applications once to use SafeNet CSP.

5. Enter the following command to strongly protect the registered challenges:

register /partition /strongprotect *

CAUTION: Youmust run register /strongprotect to ensure the protection of the HSM
partition passwords.

Note: Once you run the /strongprotect option, only those users that existed previous to the
/strongprotect command are allowed to use the SafeNet CSP. If the /strongprotect option is
not used, then any/all users can use the SafeNet CSP.

6. Enter the following command to reconnect to the library:

register.exe /library

7. Run all applications as usual.

To register an HA partition
When registering an HA Partition for use, follow these steps.

1. Enter the following command and respond to the prompts:

C:\Program Files\SafeNet\LunaClient\CSP> register /highavail

Note: Use the /highavail option only if you have HA set up for your SafeNet Enterprise HSMs.

2. For example:
**
SafeNet Luna CSP, Partition Registration
Protect the HSM's challenge for the selected partitions.
NOTE:
This is a WEAK protection of the challenge!!
After you have configured all applications that will use
the Luna CSP, and run them once, you MUST run:
 register /partition /strongprotect *
to strongly protect the registered challenges!!
**
This procedure is a destructive procedure and will completely replace
any previous settings!!
Do you wish to continue?: [y/n]
Do you want to register the partition named 'nes'? [y/n]:
Please enter the SafeNet Network HSM challenge for the partition 'nes' :
Success registering the ENCRYPTED challenge for partition 'nes'.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 379

8 Microsoft Interfaces

Only the Luna CSP will be able to use this data!
Registered 1 partition(s) for use by the Luna CSP!

Note: If you are using HA, then only the HA virtual partition is presented for registering.

3. Install and/or configure your application(s).

4. Run each of your applications once to use SafeNet CSP.

5. Enter the following command to strongly protect the registered challenges:

register /partition /strongprotect *

CAUTION: Youmust run register /strongprotect to ensure the protection of the HSM
partition passwords.

Note: Once you run the /strongprotect option, only those users that existed previous to the
/strongprotect command are allowed to use the SafeNet CSP. If the /strongprotect option is
not used, then any/all users can use the SafeNet CSP.

6. Enter the following command to reconnect to the library:

register.exe /library

7. Run all applications as usual.

Registering the Cryptographic Algorithms to be Performed in Software
Certain operations (symmetric), such as the hash operationmay be performed faster in software than on the SafeNet
HSM. The register /algorithms command allows you to choose which algorithms to de-register from the SafeNet
HSM. The trade-off is a gain in speed, at the cost of some security (exposing the operation in software). Signing and
other asymmetric operations are always done on the HSM.

To register algorithms for software-only use
1. Enter the following command and respond to the prompts:

C:\Program Files\SafeNet\LunaClient\CSP> register /algorithms

2. You are prompted for yes or no responses about which algorithms are to be registered for software-only use. For
example:
**
SafeNet Luna CSP, Algorithm Registration

Register algorithms to be done in software by the Microsoft CSP(s).
BY DEFAULT, ALL ALGORITHMS ARE DONE IN HARDWARE BY THE SafeNet Network HSM.
ONLY NON RSA ALGORITHMS MAY BE CONFIGURED FOR SOFTWARE.
RSA PUBLIC/PRIVATE ALGORITHMS WILL ALWAYS BE IN HARDWARE.
**
Do you want algorithm 'CALG_RC2', done in software?(y/n):
Do you want algorithm 'CALG_RC4', done in software?(y/n):
Do you want algorithm 'CALG_RC5', done in software?(y/n):
Do you want algorithm 'CALG_DES', done in software?(y/n):
Do you want algorithm 'CALG_3DES_112', done in software?(y/n):
Do you want algorithm 'CALG_3DES', done in software?(y/n):
Do you want algorithm 'CALG_MD2', done in software?(y/n):

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 380

8 Microsoft Interfaces

Do you want algorithm 'CALG_MD5', done in software?(y/n):
Do you want algorithm 'CALG_SHA', done in software?(y/n):
Do you want algorithm 'CALG_MAC', done in software?(y/n):
Do you want algorithm 'CALG_HMAC', done in software?(y/n):
Success registering software only algorithms:
CALG_RC2,CALG_RC4,CALG_RC5,...!

If you chose no for all prompts, then all algorithms revert to hardware and the following is displayed:
All algorithms have been de-registered and will now only be done in hardware!

Enabling Key Counting
Key counting allows you to specify themaximum number of times that a key can be used. It sets the upper limit from 0
toMAX(UInt32).

To enable key counting
1. Enter the following command and respond to the prompts. Enter the key usage limit, or enter 0 to turn off the

feature:

C:\Program Files\SafeNet\LunaClient\CSP> register /usagelimit

For example:
C:\Program Files\SafeNet\LunaClient\CSP>register /usagelimit
register v1.0.1

Enter the key usage limit: 2000

Successfully configured the key usage limit to 2000 uses.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 381

8 Microsoft Interfaces

KSP for CNG
CNG (Cryptography Next Generation) is Microsoft's cryptographic application programming environment (API)
replacing theWindows cryptoAPI (CAPI). CNG is applicable toWindows Server 2008 andWindows Server 2012. CNG
adds new algorithms along with additional flexibility and functionality, compared with the old API.

Just as SafeNet provides our CSP for applications running in olderWindows crypto environments (and JSP for Java),
we offer KSP to allow yourWindows Server 2008 CNG applications tomake use of the SafeNet HSM. You can still use
CSP withWindows Server 2008 and CAPI for your legacy applications, but future development will all take place using
CNG, for which you will need to install KSP.

KSP must be installed on any computer that is intended to act via CNG as a Client of the HSM, running crypto
operations in hardware. You need KSP to integrate SafeNet cryptoki with CNG and to use the newer functions and
algorithms inMicrosoft IIS.

After you register the SafeNet HSM partitions with SafeNet KSP, your KSP code should work in the samemanner
whether our HSM (crypto provider) is selected, or the default provider is used.

Note: TRANSITION ISSUES Be aware when working in amixed environment or updating
applications that previously used CAPI and the SafeNet CSP - the new algorithms supported
by CNG (such as SHA512 and ECDSA) in Certificate Services are not recognized by systems
that use CAPI. If Certificate Services is configured to use any of these new Algorithms then the
signed certificates can be installed only on systems that are aware of these new algorithms.
Any of the systems that use CAPI will not be able to use this feature. The installation of
certificate will fail.

Installing KSP
KSP is installed using the SafeNet Client installer. Note that it is not installed by default andmust be explicitly selected
when you install the SafeNet Client. You can also install KSP after you install the SafeNet Client by re-running the
installer.

The KSP installer installs the following utilities in the C:\Program Files\SafeNet\LunaClient\KSP folder:

Utility name Description

KspConfig.exe A GUI utility used to configure KSP.

kspcmd.exe A command-line utility used to configure KSP.

ksputil.exe A command-line utility used tomake keys available to other clients, such as in a clustering
configuration.

ms2Luna.exe A command-line utility used tomigrate software-based keys to a SafeNet HSM.

Configuring KSP
After installing KSP, use the KSP configuration wizard to register your HSM Partitions for use with CNG. The KSP
configuration tool secures the Password for each HSM Partition such that only the user for which the Password was
secured is able to un-secure it.

Briefly, the important points are:

• Register the cryptoki to be used.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 382

8 Microsoft Interfaces

• Register the slot-to-be-used to the local admin (which allows the admin to interact with the slot)

• Register the slot-to-be-used to the local system (which allows the operating system to interact with the slot).

Note: Only the Administrator or amember of the Administrators group can run
"KspConfig.exe". The SafeNet KSP can be used by any application that acquires the context of
the SafeNet KSP. All users who login and use the applications that acquired the context have
access to the SafeNet KSP.

To configure KSP
1. Go to C:\Program Files\SafeNet\LunaClient\KSP and launch KspConfig.exe (the KSP configuration wizard).

2. In the left-hand pane (tree view) double-click "Register Or View Security Library"

3. In the right-hand pane, browse to the library C:\Program Files\SafeNet\LunaClient\cryptoki.dll and click Register.

4. When the success message appears, click OK.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 383

8 Microsoft Interfaces

5. Return to the left-hand pane and double-click "Register HSM Slots", and click [Next]. In general, we recommend
that you register by slot label, rather than slot number, if you are using an HA configuration .

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 384

8 Microsoft Interfaces

6. In the "Slot Password" field, type in the password for the indicated slot.To the right of the window, click the
[Register Slot] button to register the slot for Domain/User. A success message appears.

Note that the "Register for User" field should be Administrator (or the admin equivalent account that will be
managing this setup) and "Domain" shouldmatch the domain or local computer with which you are logged in.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 385

8 Microsoft Interfaces

7. Return to the "Domain" pull-down list select "SYSTEM" under "Register for User"and select "NT AUTHORITY"
under "Domain", supply the password for the slot being registered, and again click Register Slot] to complete the
KSP configuration.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 386

8 Microsoft Interfaces

8. Once you have the slots registered, you can begin connecting with your client application to perform crypto
operations in your HSM Partitions (or HA virtual slots). If a SafeNet-tested Integration procedure for your
application is not available for download from the SafeNet website, contact SafeNet Customer Support.

If It Doesn't Work?
When you open the KspConfig program, if it fails to display a list of available slots, then it might be that you have not
properly set up your SafeNet HSM.

Open aWindows Command Prompt window, change directory to the "C:\Program Files\SafeNet\LunaClient\"
directory, and use the "lunacm" command-line utility to see andmodify the status of the HSM andHSM Partitions.

Algorithms Supported
Here, for comparison, are the algorithms supported by our CSP and KSP APIs.

Algorithms supported by the SafeNet CSP
CALG_RSA_SIGN

CALG_RSA_KEYX

CALG_RC2

CALG_RC4

CALG_RC5

CALG_DES

CALG_3DES_112

CALG_3DES

CALG_MD2

CALG_MD5

CALG_SHA

CALG_SHA_256

CALG_SHA_384

CALG_SHA_512

CALG_MAC

CALG_HMAC

Algorithms supported by the SafeNet KSP
NCRYPT_RSA_ALGORITHM

NCRYPT_DSA_ALGORITHM

NCRYPT_ECDSA_P256_ALGORITHM

NCRYPT_ECDSA_P384_ALGORITHM

NCRYPT_ECDSA_P521_ALGORITHM

NCRYPT_ECDH_P256_ALGORITHM

NCRYPT_ECDH_P384_ALGORITHM

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 387

8 Microsoft Interfaces

NCRYPT_ECDH_P521_ALGORITHM

NCRYPT_DH_ALGORITHM

NCRYPT_RSA_ALGORITHM

Enabling Key Counting
Key counting allows you to specify themaximum number of times that a key can be used. It sets the upper limit from 0
toMAX(UInt32).

To enable key counting
1. Enter the following command and respond to the prompts. Enter the key usage limit, or enter 0 to turn off the

feature:

C:\Program Files\SafeNet\LunaClient\KSP> kspcmd usagelimit

For example:
C:\Program Files\SafeNet\LunaClient\KSP>kspcmd usageLimit 2000
This Servers Host Name is: LUNA_CLIENT and the logged on user is: admin@LUNA_CLIENT

Enter the key usage limit: 2000

Successfully configured the key usage limit to 2000 uses.

C:\Program Files\SafeNet\LunaClient\KSP>kspcmd u
This Servers Host Name is: LUNA_CLIENT and the logged on user is: admin@LUNA_CLIENT

Warning, max key usage is already set to 2000.
Changing this will not modify previously created keys!
Only keys created subsequent to making this change will be affected!
Do you wish to continue?[y/n]:

SafeNet CSP Calls and Functions
For integration with Microsoft Certificate Services and other applications, the LunaCSP.dll library accepts Crypt calls
and gives access to token functions (via CP calls) as listed in this section. Key pairs and certificates are generated,
stored and used on the SafeNet HSM.

The diagram below depicts the relationship of the SafeNet components to the other layers in the certificate system.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 388

8 Microsoft Interfaces

Figure 1: SafeNet CSP architecture

Note, in the diagram, that the SafeNet CSP routes relevant calls through the statically linked Crystoki library to the
HSM via CP calls. Other calls from the application layer – those not directed at the token/HSM, and not matching the
SafeNet CSP supported functions (see next section) – are passed to theMicrosoft CSP.

Programming for SafeNet HSM with SafeNet CSP
The SafeNet CSP DLL exports the following functions, each one corresponding to an equivalent (and similarly named)
Crypt call from the application layer:

• CPAcquireContext

• CPGetProvParam

• CPSetProvParam

• CPReleaseContext

• CPDeriveKey

• CPDestroyKey

• CPDuplicateKey

• CPExportKey

• CPGenKey

• CPGenRandom

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 389

8 Microsoft Interfaces

• CPGetKeyParam

• CPGetUserKey

• CPImportKey

• CPSetKeyParam

• CPDecrypt

• CPEncrypt

• CPCreateHash

• CPDestroyHash

• CPGetHashParam

• CPHashData

• CPHashSessionKey

• CPSetHashParam

• CPSignHash

• CPVerifySignature

Note: The CPVerifySignature function is able to verify signatures of up to 2048 bits, regardless
of the size of the signatures produced by CPSignHash. This ensures that the CSP is able to
validate all compatible certificates, even those signed with large keys.

Note: TheMSDN (Microsoft Developers Network) web site provides syntax and descriptions
of the corresponding Crypt calls that invoke the functions in the above list.

Algorithms
SafeNet CSP supports the following algorithms:

• CALG_RSA_SIGN [RSA Signature] [256 - 4096 bits]. The CSP uses the RSA Public-Key Cipher for digital
signatures.

• CALG_RSA_KEYX [RSA Key Exchange] [256- 4096 bits] The CSP must use the RSA Public-Key Cipher key
exchange. The exchange key pair can be used both to exchange session keys and to verify digital signatures.

• CALG_RC2 [RSA Data Securities RC2 (block cipher)] [8 - 1024 bits].

• CALG_RC4 [RSA Data Securities RC4 (stream cipher)] [8 - 2048 bits].

• CALG_RC5 [RSA Data Securities RC5 (block cipher)] [8 - 2048 bits].

• CALG_DES [Data Encryption Standard (block cipher)] [56 bits].

• CALG_3DES_112 [Double DES (block cipher)] [112 bits].

• CALG_3DES [Triple DES (block cipher)] [168 bits].

• CALG_MAC [Message Authentication Code] (with RC2 only).

• CALG_HMAC [Hash-basedMAC].

• CALG_MD2 [Message Digest 2 (MD2)] [128 bits].

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 390

8 Microsoft Interfaces

• CALG_MD5 [Message Digest 5 (MD5)] [128 bits].

• CALG_SHA [Secure Hash Algorithm (SHA-1)] [160 bits].

• CALG_SHA224 [Secure Hash Algorithm (SHA-2)] [224 bits].

• CALG_SHA256 [Secure Hash Algorithm (SHA-2)] [256 bits].

• CALG_SHA384 [Secure Hash Algorithm (SHA-2)] [384 bits].

• CALG_SHA512 [Secure Hash Algorithm (SHA-2)] [512 bits].

Note: If you intend to perform key exchanges between the SafeNet CSP and theMicrosoft
CSP with RC2 keys, the attribute KP_ EFFECTIVE_KEYLEN must be set to 128 bits. For
RC2 and RC4, the salt value of the keys must be transferred by making a call to get the salt
value of the original key and to set the salt value of an imported key. This is done with the
CryptGetKeyParam(KP_ SALT) and CryptSetKeyParam(KP_ SALT) functions respectively.

SafeNet USBHSMSDKReferenceGuide
Release 6.2.2 Rev. B February 2017 Copyright 2001-2017Gemalto All rights reserved. 391

	PREFACE About the SDK Reference Guide
	Customer Release Notes
	Gemalto Rebranding
	Audience
	Document Conventions
	Notes
	Cautions
	Warnings
	Command Syntax and Typeface Conventions

	Support Contacts

	1 SafeNet SDK Overview
	Supported Cryptographic Algorithms
	Application Programming Interface

	Application Programming Interface (API) Overview
	Sample Application
	A Note About RSA Key Attributes ‘p’ and ‘q’

	What Does 'Supported' Mean?
	Why Is an Integration Not Listed Here Or On the Website?

	Frequently Asked Questions
	How can we use a SafeNet HSM with a Key Manager?
	We need to encrypt PANs on MS SQL Server 2008 (Extensible Key Management). We...
	Makecert fails when using SafeNet Network HSM with MS Authenticode, because t...
	We are developing our application(s) in C#, and we want to integrate with S...
	We intend to use PKCS#11 data objects - is this supported in the API for yo...
	In our application, both for PKCS#11 and for the JCA/JCE SafeNet Provider, ...
	We were using another vendor's HSM - or are evaluating HSM products - to host...

	2 PKCS#11 Support
	PKCS#11 Compliance
	Supported PKCS#11 Services
	Additional Functions

	Using the PKCS#11 Sample
	The SfntLibPath Environment Variable
	What p11Sample Does

	3 Extensions to PKCS#11
	SafeNet Extensions to PKCS#11
	Other APIs
	Summary of New Functions
	Cryptoki Version Supported

	HSM Configuration Settings
	SafeNet Network HSM-Specific Commands
	Commands Not Available Through Libraries
	Configuration Settings

	Secure PIN Port Authentication
	Shared Login State and Application IDs
	Why Share Session State Between Applications?
	Login State Sharing Overview
	Login State Sharing Functions
	Application ID Examples

	High Availability Indirect Login Functions
	Initialization functions
	Recovery Functions
	Login Key Attributes
	Control of HA Functionality

	MofN Secret Sharing
	Key Export Features
	RSA Key Component Wrapping

	Derivation of Symmetric Keys with 3DES_ECB
	PKCS # 11 Extension HA Status Call
	Function Definition

	Pseudorandom Function KDF Mechanisms
	Derive Template
	Examples

	Unwrap Template
	Use Case Example
	Examples

	4 Supported Mechanisms
	Mechanism Remap for FIPS Compliance
	Mechanism Remap Configuration Settings

	CKM_2DES_DERIVE
	CKM_AES_CBC
	CKM_AES_CBC_ENCRYPT_DATA
	CKM_AES_CBC_PAD
	CKM_AES_CBC_PAD_EXTRACT
	CKM_AES_CBC_PAD_EXTRACT_DOMAIN_CTRL
	CKM_AES_CBC_PAD_EXTRACT_FLATTENED
	CKM_AES_CBC_PAD_EXTRACT_PUBLIC
	CKM_AES_CBC_PAD_EXTRACT_PUBLIC_FLATTENED
	CKM_AES_CBC_PAD_INSERT
	CKM_AES_CBC_PAD_INSERT_DOMAIN_CTRL
	CKM_AES_CBC_PAD_INSERT_FLATTENED
	CKM_AES_CBC_PAD_INSERT_PUBLIC
	CKM_AES_CBC_PAD_INSERT_PUBLIC_FLATTENED
	CKM_AES_CBC_PAD_IPSEC
	CKM_AES_CFB8
	CKM_AES_CFB128
	CKM_AES_CMAC
	CKM_AES_CTR
	CKM_AES_ECB
	CKM_AES_ECB_ENCRYPT_DATA
	CKM_AES_GCM
	CKM_AES_GMAC
	CKM_AES_KEY_GEN
	CKM_AES_KW
	CKM_AES_MAC
	CKM_AES_OFB
	CKM_ARIA_CBC
	CKM_ARIA_CBC_ENCRYPT_DATA
	CKM_ARIA_CBC_PAD
	CKM_ARIA_CFB8
	CKM_ARIA_CFB128
	CKM_ARIA_CMAC
	CKM_ARIA_CTR
	CKM_ARIA_ECB
	CKM_ARIA_ECB_ENCRYPT_DATA
	CKM_ARIA_GCM
	CKM_ARIA_KEY_GEN
	CKM_ARIA_L_CBC
	CKM_ARIA_L_CBC_PAD
	CKM_ARIA_L_ECB
	CKM_ARIA_L_MAC
	CKM_ARIA_MAC
	CKM_ARIA_OFB
	CKM_CAST3_CBC
	CKM_CAST3_CBC_PAD
	CKM_CAST3_ECB
	CKM_CAST3_KEY_GEN
	CKM_CAST3_MAC
	CKM_CAST5_CBC
	CKM_CAST5_CBC_PAD
	CKM_CAST5_ECB
	CKM_CAST5_KEY_GEN
	CKM_CAST5_MAC
	CKM_CONCATENATE_BASE_AND_DATA
	CKM_CONCATENATE_BASE_AND_KEY
	CKM_CONCATENATE_DATA_AND_BASE
	CKM_CONCATENATE_KEY_AND_BASE
	CKM_DES_CBC
	CKM_DES_CBC_ENCRYPT_DATA
	CKM_DES_CBC_PAD
	CKM_DES_ECB
	CKM_DES_ECB_ENCRYPT_DATA
	CKM_DES_KEY_GEN
	CKM_DES_MAC
	CKM_DES2_DUKPT_DATA
	CKM_DES2_DUKPT_DATA_RESP
	CKM_DES2_DUKPT_MAC
	CKM_DES2_DUKPT_MAC_RESP
	CKM_DES2_DUKPT_PIN
	CKM_DES2_KEY_GEN
	CKM_DES3_CBC
	CKM_DES3_CBC_ENCRYPT_DATA
	CKM_DES3_CBC_PAD
	CKM_DES3_CBC_PAD_IPSEC
	CKM_DES3_CFB8
	CKM_DES3_CFB64
	CKM_DES3_CMAC
	CKM_DES3_CTR
	CKM_DES3_ECB
	CKM_DES3_ECB_ENCRYPT_DATA
	CKM_DES3_GCM
	CKM_DES3_KEY_GEN
	CKM_DES3_MAC
	CKM_DES3_OFB
	CKM_DES3_X919_MAC
	CKM_DH_PKCS_DERIVE
	CKM_DH_PKCS_KEY_PAIR_GEN
	CKM_DH_PKCS_PARAMETER_GEN
	CKM_DSA
	CKM_DSA_KEY_PAIR_GEN
	CKM_DSA_PARAMETER_GEN
	CKM_EC_KEY_PAIR_GEN
	CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS
	CKM_ECDH1_COFACTOR_DERIVE
	CKM_ECDH1_DERIVE
	CKM_ECDSA
	CKM_ECIES
	CKM_ECMQV_DERIVE
	CKM_EXTRACT_KEY_FROM_KEY
	CKM_GENERIC_SECRET_KEY_GEN
	CKM_HAS160
	CKM_HAS160_KCDSA
	CKM_HAS160_KCDSA_NO_PAD
	CKM_HMAC_HAS160
	CKM_HMAC_MD5
	CKM_HMAC_MD5_80
	CKM_HMAC_RIPEMD160
	CKM_HMAC_SHA1
	CKM_HMAC_SHA1_80
	CKM_HMAC_SHA224
	CKM_HMAC_SHA256
	CKM_HMAC_SHA384
	CKM_HMAC_SHA512
	CKM_HMAC_SM3
	CKM_KCDSA_KEY_PAIR_GEN
	CKM_KCDSA_PARAMETER_GEN
	CKM_KEY_WRAP_SET_OAEP
	CKM_LOOP_BACK
	CKM_LZS
	CKM_MD2
	CKM_MD2_DES_CBC
	CKM_MD2_KEY_DERIVATION
	CKM_MD5
	CKM_MD5_CAST_CBC
	CKM_MD5_CAST3_CBC
	CKM_MD5_DES_CBC
	CKM_MD5_KEY_DERIVATION
	CKM_MD5_RSA_PKCS
	CKM_NIST_PRF_KDF
	CKM_PKCS5_PBKD2
	CKM_PRF_KDF
	CKM_RC2_CBC
	CKM_RC2_CBC_PAD
	CKM_RC2_ECB
	CKM_RC2_KEY_GEN
	CKM_RC2_MAC
	CKM_RC4
	CKM_RC4_KEY_GEN
	CKM_RC5_CBC
	CKM_RC5_CBC_PAD
	CKM_RC5_ECB
	CKM_RC5_KEY_GEN
	CKM_RC5_MAC
	CKM_RIPEMD160
	CKM_RSA_FIPS_186_3_AUX_PRIME_KEY_PAIR_GEN
	CKM_RSA_FIPS_186_3_PRIME_KEY_PAIR_GEN
	CKM_RSA_PKCS
	CKM_RSA_PKCS_KEY_PAIR_GEN
	CKM_RSA_PKCS_OAEP
	CKM_RSA_PKCS_PSS
	CKM_RSA_X_509
	CKM_RSA_X9_31
	CKM_RSA_X9_31_KEY_PAIR_GEN
	CKM_RSA_X9_31_NON_FIPS
	CKM_SEED_CBC
	CKM_SEED_CBC_PAD
	CKM_SEED_CMAC
	CKM_SEED_CTR
	CKM_SEED_ECB
	CKM_SEED_KEY_GEN
	CKM_SEED_MAC
	CKM_SHA_1
	CKM_SHA1_CAST5_CBC
	CKM_SHA1_DES2_CBC
	CKM_SHA1_DES2_CBC_OLD
	CKM_SHA1_DES3_CBC
	CKM_SHA1_DES3_CBC_OLD
	CKM_SHA1_DSA
	CKM_SHA1_ECDSA
	CKM_SHA1_KCDSA
	CKM_SHA1_KCDSA_NO_PAD
	CKM_SHA1_KEY_DERIVATION
	CKM_SHA1_RC2_40_CBC
	CKM_SHA1_RC2_128_CBC
	CKM_SHA1_RC4_40
	CKM_SHA1_RC4_128
	CKM_SHA1_RSA_PKCS
	CKM_SHA1_RSA_PKCS_PSS
	CKM_SHA1_RSA_X9_31
	CKM_SHA1_RSA_X9_31_NON_FIPS
	CKM_SHA224
	CKM_SHA224_DSA
	CKM_SHA224_ECDSA
	CKM_SHA224_KCDSA
	CKM_SHA224_KCDSA_NO_PAD
	CKM_SHA224_KEY_DERIVATION
	CKM_SHA224_RSA_PKCS
	CKM_SHA224_RSA_PKCS_PSS
	CKM_SHA224_RSA_X9_31
	CKM_SHA224_RSA_X9_31_NON_FIPS
	CKM_SHA256
	CKM_SHA256_DSA
	CKM_SHA256_ECDSA
	CKM_SHA256_ECDSA_GBCS
	CKM_SHA256_KCDSA
	CKM_SHA256_KCDSA_NO_PAD
	CKM_SHA256_KEY_DERIVATION
	CKM_SHA256_RSA_PKCS
	CKM_SHA256_RSA_PKCS_PSS
	CKM_SHA256_RSA_X9_31
	CKM_SHA256_RSA_X9_31_NON_FIPS
	CKM_SHA384
	CKM_SHA384_ECDSA
	CKM_SHA384_KCDSA
	CKM_SHA384_KCDSA_NO_PAD
	CKM_SHA384_KEY_DERIVATION
	CKM_SHA384_RSA_PKCS
	CKM_SHA384_RSA_PKCS_PSS
	CKM_SHA384_RSA_X9_31
	CKM_SHA384_RSA_X9_31_NON_FIPS
	CKM_SHA512
	CKM_SHA512_ECDSA
	CKM_SHA512_KCDSA
	CKM_SHA512_KCDSA_NO_PAD
	CKM_SHA512_KEY_DERIVATION
	CKM_SHA512_RSA_PKCS
	CKM_SHA512_RSA_PKCS_PSS
	CKM_SHA512_RSA_X9_31
	CKM_SHA512_RSA_X9_31_NON_FIPS
	CKM_SM3
	CKM_SM3_KEY_DERIVATION
	CKM_SSL3_KEY_AND_MAC_DERIVE
	CKM_SSL3_MASTER_KEY_DERIVE
	CKM_SSL3_MD5_MAC
	CKM_SSL3_PRE_MASTER_KEY_GEN
	CKM_SSL3_SHA1_MAC
	CKM_UNKNOWN
	CKM_X9_42_DH_DERIVE
	CKM_X9_42_DH_HYBRID_DERIVE
	CKM_X9_42_DH_KEY_PAIR_GEN
	CKM_X9_42_DH_PARAMETER_GEN

	5 Using the SafeNet SDK
	Libraries and Applications
	SafeNet SDK Applications General Information
	Compiler Tools
	The Applications

	Application IDs
	Shared Login State and Application IDs

	Named Curves and User-Defined Parameters
	Curve Validation Limitations
	Storing Domain Parameters
	Using Domain Parameters
	User Friendly Encoder
	Application Interfaces
	Sample Domain Parameter Files

	Curve Names By Organization
	Capability and Policy Configuration Control Using the SafeNet API
	HSM Capabilities and Policies
	HSM Partition Capabilities and Policies
	Policy Refinement
	Policy Types
	Querying and Modifying HSM Configuration

	Connection Timeout
	Linux and Unix Connection Timeout
	Windows Connection Timeout

	6 Design Considerations
	PED-Authenticated HSMs
	About CKDemo with SafeNet PED
	Interchangeability
	Startup
	Cloning of Tokens

	High Availability (HA) Implementations
	Detecting the Failure of an HA Member

	Migrating Keys From Software to a SafeNet HSM
	Other Formats of Key Material
	Sample Program

	Audit Logging
	Audit Log Records
	Audit Log Message Format
	Log External

	About Scalable Key Storage
	Scalable Key Storage (formerly SIM) APIs
	SIM II (Enhancements to SIM)
	Example Operations Using CKDemo

	Using Scalable Key Storage in a Multi-HSM Environment

	7 Java Interfaces
	SafeNet JSP Overview and Installation
	JDK Compatibility
	Installation
	Post-Installation Tasks

	SafeNet JSP Configuration
	Installation
	Java -- Encryption policy files for unlimited strength ciphers
	SafeNet Java Security Provider
	Keytool
	Cleaning Up
	PKCS#11/JCA Interaction

	The JCPROV PKCS#11 Java Wrapper
	JCPROV Overview
	Installing JCPROV
	JCPROV Sample Programs
	JCPROV Sample Classes
	JCPROV API Documentation

	Java or JSP Errors
	Re-Establishing a Connection Between Your Java Application and SafeNet Networ...
	Recovering From the Loss of All HA Members
	When to Use the reintialize Method
	Why the Method Must Be Used
	What Happens on the HSM

	Elliptic Curve Problem in SUN JDK 1.6 and earlier
	Using Java Keytool with SafeNet HSM
	Limitations

	Keytool Usage and Examples
	Import CA certificate
	Generate private key
	Create the CSR
	Import client certificate
	How to build a certificate with chain ...
	Additional minor notes

	JSP Dynamic Registration Sample
	Sample Code

	8 Microsoft Interfaces
	The SafeNet CSP Registration Tool and Utilities
	The Keymap Utility
	The ms2Luna Utility
	The CSP Registration Tool

	KSP for CNG
	Installing KSP
	Configuring KSP
	If It Doesn't Work?
	Algorithms Supported
	Enabling Key Counting

	SafeNet CSP Calls and Functions
	Programming for SafeNet HSM with SafeNet CSP
	Algorithms

